初中数学冀教版九年级下册第30章 二次函数综合与测试精品练习
展开
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试精品练习,共26页。试卷主要包含了抛物线y=42+3的顶点坐标是,二次函数y=ax2﹣4ax+c等内容,欢迎下载使用。
九年级数学下册第三十章二次函数同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将抛物线向下平移1个单位长度,再向左平移2个单位长度后,得到的抛物线表达式是( )A. B. C. D.2、抛物线的对称轴是( )A.直线 B.直线 C.直线 D.直线3、下列函数中,随的增大而减小的是( )A. B.C. D.4、2020年2月3日,随着南立交匝道最后一条交通线划线完毕,蒙山大道祊河桥迎来了南北东西方向全线通车,蒙山高架路“踏实落地”,市民从此可一路畅通.蒙山大道祊河桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )A. B. C. D.5、已知二次函数,则关于该函数的下列说法正确的是( )A.该函数图象与轴的交点坐标是B.当时,的值随值的增大而减小C.当取1和3时,所得到的的值相同D.将的图象先向左平移两个单位,再向上平移5个单位得到该函数图象6、抛物线y=4(2x﹣3)2+3的顶点坐标是( )A.(,3) B.(4,3) C.(3,3) D.(﹣3,3)7、如图,在中,,,,是边上一动点,沿的路径移动,过点作,垂足为.设,的面积为,则下列能大致反映与函数关系的图象是( )A. B.C. D.8、抛物线的函数表达式为,若将y轴向左平移3个单位长度,将x轴向下平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为( )A. B.C. D.9、二次函数y=ax2﹣4ax+c(a>0)的图象过A(﹣2,y1),B(0,y2),C(3,y3),D(5,y4)四个点,下列说法一定正确的是( )A.若y1y2>0,则y3y4>0 B.若y1y4>0,则y2y3>0C.若y2y4<0,则y1y3<0 D.若y3y4<0,则y1y2<010、二次函数的图像如图所示,那么点在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、抛物线与y轴的交点坐标为_________.2、抛物线y=x2+2x+的对称轴是直线______.3、抛物线的顶点坐标是______.4、二次函数 y  2x21 的图象开口方向______.(填“向上”或“向下”)5、将抛物线y=x2向左平移3个单位所得图象的函数表达式为___.三、解答题(5小题,每小题10分,共计50分)1、如图,隧道的截面由抛物线和长方形构成.长方形的长为,宽为,抛物线的最高点离路面的距离为.(1)求抛物线的函数表达式;(2)一大型货车装载设备后高为,宽为.如果隧道内设双向行驶车道,那么这辆货车能否安全通过?2、如图,抛物线经过点,,.(1)求抛物线的解析式;(2)若点为第三象限内抛物线上的一点,设的面积为,求的最大值并求出此时点的坐标;(3)设抛物线的顶点为,在轴上是否存在点,使得是直角三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.3、如图,二次函数(m是实数,且)的图像与x轴交于A、B两点(点A在点B的左侧),其对称轴与x轴交于点C,已知点D位于第一象限,且在对称轴上,,点E在x轴的正半轴上,.连接ED并延长交y轴于点F,连接AF.(1)求A、B、C三点的坐标(用数字或含m的式子表示);(2)已知点Q在抛物线的对称轴上,当的周长的最小值等于,求m的值.4、图中是抛物线形拱桥,P处有一照明灯,水面OA宽4m.以O为原点,OA所在直线为x轴建立直角坐标系,若点P的坐标为.(1)求拱桥所在抛物线的函数表达式;(2)因降暴雨水位上升1m,此时水面宽为多少?(结果保留根号)5、某政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,月销售量(件)与销售单价(元)之间的关系可看作一次函数:,已知当销售单价定为25元时,李明每月获得利润为1250元.(1)求的值;(2)当销售单价定为多少元时,每月可获得最大利润?并求最大利润是多少?(注:利润=(销售单价-进价)×销售量) -参考答案-一、单选题1、C【解析】【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:因为y=x2-2x+3=(x-1)2+2.所以将抛物线y=(x-1)2+2先向下平移1个单位长度,再向左平移2个单位长度后,得到的抛物线的表达式为y=(x-1+2)2+2-1,即y=(x+1)2+1.故选:C.【点睛】本题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.2、C【解析】【分析】抛物线的对称轴为:,根据公式直接计算即可得.【详解】解:,其中:,,,,故选:C.【点睛】本题考查的是抛物线的对称轴,掌握抛物线的对称轴的公式是解本题的关键,注意对称轴是直线.3、C【解析】【分析】根据各个选项中的函数解析式,可以判断出y随x的增大如何变化,从而可以解答本题.【详解】解:A.在中,y随x的增大而增大,故选项A不符合题意;B.在中,y随x的增大与增大,不合题意;C.在中,当x>0时,y随x的增大而减小,符合题意;D.在,x>2时,y随x的增大而增大,故选项D不符合题意;故选:C.【点睛】本题考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.4、B【解析】【分析】直接利用图象设出抛物线解析式,进而得出答案.【详解】∵拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,∴设抛物线解析式为y=ax2,点B(45,-78),∴-78=452a,解得:a=,∴此抛物线钢拱的函数表达式为,故选:B.【点睛】本题主要考查了二次函数的应用,正确设出抛物线解析式是解题关键.5、C【解析】【分析】把,代入,即可判断A,由二次函数的图象开口向上,对称轴是直线,即可判断B,当取和,代入,即可判断C,根据函数图象的平移规律,即可判断D.【详解】∵二次函数的图象与轴的交点坐标是,∴A选项错误;∵二次函数的图象开口向上,对称轴是直线,∴当时,的值随值的增大而增大,∴B选项错误;∵当取和时,所得到的的值都是11,∴C选项正确;∵将的图象先向左平移两个单位,再向上平移个单位得到的图象,∴D选项错误.故选:C.【点睛】本题主要考查二次函数的图象和性质,理解二次函数的性质是解题的关键.6、A【解析】【分析】根据顶点式的顶点坐标为求解即可【详解】解:抛物线的顶点坐标是故选A【点睛】本题考查了二次函数顶点式的顶点坐标为,掌握顶点式求顶点坐标是解题的关键.7、D【解析】【分析】分两种情况分类讨论:当0≤x≤6.4时,过C点作CH⊥AB于H,利用△ADE∽△ACB得出y与x的函数关系的图象为开口向上的抛物线的一部分;当6.4<x≤10时,利用△BDE∽△BCA得出y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.【详解】解:∵,,,∴BC=,过CA点作CH⊥AB于H,∴∠ADE=∠ACB=90°,∵,∴CH=4.8,∴AH=,当0≤x≤6.4时,如图1,∵∠A=∠A,∠ADE=∠ACB=90°,∴△ADE∽△ACB,∴,即,解得:x=,∴y=•x•=x2;当6.4<x≤10时,如图2,∵∠B=∠B,∠BDE=∠ACB=90°,∴△BDE∽△BCA,∴,即,解得:x=,∴y=•x•=;故选:D.【点睛】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用分类讨论的思想求出y与x的函数关系式.8、C【解析】【分析】此题可以转化为求将抛物线“向右平移3个单位长度,向上平移3个单位长度”后所得抛物线解析式,将抛物线直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.【详解】解:∵抛物线的顶点坐标为 ,∴将抛物线向右平移3个单位长度,向上平移3个单位长度后得到的抛物线顶点坐标为 ,∴将抛物线向右平移3个单位长度,向上平移3个单位长度后得到的抛物线的解析式为,∴将y轴向左平移3个单位长度,将x轴向下平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为.故选:C【点睛】此题主要考查了二次函数图象与几何变换,正确掌握平移规律——左加右减,上加下减是解题关键.9、C【解析】【分析】根据函数表达式得出函数的开口方向和对称轴,从而得到y3<y2<y4<y1,再结合题目一一判断即可.【详解】解:由函数表达式可知:函数图像开口向上,对称轴为直线x==2,∵-2<0<2<3<5,∴y3<y2<y4<y1,若y1y2>0,则y3y4>0或y3y4<0,选项A不符合题意,若y1y4>0,则y2y3>0或y2y3<0,选项B不符合题意,若y2y4<0,则y1y3<0,选项C符合题意,若y3y4<0,则y1y2<0或y1y2>0,选项D不符合题意,故选:C.【点睛】本题考查二次函数的性质,二次函数图象上的点的坐标特征,解题的关键是学会利用图象法解决问题,属于中考常考题型.10、C【解析】【分析】根据对称轴的位置、开口方向、与y轴的交点的位置即可判断出a、b、c的符号,进而求出的符号.【详解】由函数图像可得:∵抛物线开口向上,∴a>0,又∵对称轴在y轴右侧,∴,∴b<0,又∵图象与y轴交于负半轴,∴c<0,∴∴在第三象限故选:C【点睛】考查二次函数y=ax2+bx+c系数符号的确定.根据对称轴的位置、开口方向、与y轴的交点的位置判断出a、b、c的符号是解题的关键.二、填空题1、【解析】【分析】根据二次函数图像的性质,时,通过计算即可得到答案.【详解】当时,∴抛物线与y轴的交点坐标为 故答案为:.【点睛】本题考查了二次函数的知识;解题的关键是熟练掌握二次函数的性质,从而完成求解.2、x=﹣1【解析】【分析】抛物线的对称轴方程为: 利用公式直接计算即可.【详解】解:抛物线y=x2+2x+的对称轴是直线: 故答案为:【点睛】本题考查的是抛物线的对称轴方程,掌握“抛物线的对称轴方程的公式”是解本题的关键.3、 (2,-1)【解析】【分析】先把抛物线配方为顶点式,再确定顶点坐标即可.【详解】解:,∴抛物线的顶点坐标为(2,-1).故答案为(2,-1).【点睛】本题考查抛物线的顶点坐标,掌握抛物线配方为顶点式的方法是解题关键.4、向上【解析】【分析】根据二次函数图象的性质,a>0,抛物线开口向上,a<0,抛物线开口向下可求解.【详解】∵a=2>0,∴二次函数y=2x2+1图象的开口方向是向上,故答案为:向上.【点睛】本题主要考查二次函数的图象与性质,由a的符号确定抛物线的开口方向是解题的关键.5、y=(x+3)2【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知,将抛物线y=x2向左平移3个单位所得直线的解析式为:y=(x+3)2.故答案是:y=(x+3)2.【点睛】本题考查了二次函数的图象与几何变换,正确理解平移法则是关键.三、解答题1、 (1)(2)这辆货车能安全通过,理由见解析【解析】【分析】(1)根据题意得: , ,抛物线的顶点坐标为点 ,从而得到点 ,设抛物线的函数表达式为 ,把点代入,即可求解;(2)根据题意得:当 时, ,即可求解.(1)解:∴ ,设抛物线的函数表达式为 ,∴ ,解得: ,∴抛物线的函数表达式为;(2)解:这辆货车能安全通过,理由如下:根据题意得:当 时, ,∴这辆货车能安全通过.【点睛】本题主要考查了二次函数的实际应用,明确题意,准确得到函数关系式是解题的关键.2、 (1)(2)当时,有最大值,此时点的坐标为(3)在轴上存在点,能够使得是直角三角形,此时点的坐标为或或或.【解析】【分析】(1)已知抛物线上的三点坐标,利用待定系数法可求出该二次函数的解析式;(2)过点作轴的垂线交于,过点作轴的垂线,交于点,先运用待定系数法求出直线的解析式,设点坐标为,根据的解析式表示出点的坐标,再根据就可以表示出的面积,运用顶点式就可以求出结论;(3)分三种情况进行讨论:①以为直角顶点;②以为直角顶点;③以为直角顶点;设点的坐标为,根据勾股定理列出方程,求出的值即可.(1)解:抛物线经过点,,,,解得.抛物线的解析式为:;(2)如图,过点作轴的垂线交于,过点作轴的垂线,交于点.设直线的解析式为,由题意,得,解得,直线的解析式为:.设点坐标为,则点的坐标为,.,,当时,有最大值,此时点的坐标为;(3)解:在轴上是存在点,能够使得是直角三角形.理由如下:,顶点的坐标为,,.设点的坐标为,分三种情况进行讨论:①当为直角顶点时,如图3①,由勾股定理,得,即,解得,所以点的坐标为;②当为直角顶点时,如图3②,由勾股定理,得,即,解得,所以点的坐标为;③当为直角顶点时,如图3③,由勾股定理,得,即,解得或,所以点的坐标为或;综上可知,在轴上存在点,能够使得是直角三角形,此时点的坐标为或或或.【点睛】本题考查了二次函数综合题,涉及到用待定系数法求一次函数、二次函数的解析式,三角形的面积,二次函数的顶点式的运用,勾股定理等知识,解题的关键是运用数形结合、分类讨论及方程思想进行求解.3、 (1),,(2)【解析】【分析】(1)把代入函数解析式,可得,再利用因式分解法解方程可得的坐标,再求解函数的对称轴,可得的坐标;(2)先证明,利用相似三角形的性质求解,利用三角形的中位线定理再求解.再利用勾股定理求解,如图,当点、、三点共线时,的长最小,此时的周长最小.可得.再利用勾股定理列方程,解方程可得答案.(1)令 则, ∴,,∴对称轴为直线,∴.(2)在中, ,∴∠ODC=∠CBD, , ,. .∵轴,轴,∴.∵,∴.∴.在中,,∴,即.(负根舍去)∵点与点关于对称轴对称,∴.∴如图,当点、、三点共线时,的长最小,此时的周长最小.∴的周长的最小值为,∴的长最小值为,即.∵,∴.∴.∵,∴.【点睛】本题考查了二次函数与坐标轴的交点问题,二次函数图象的性质,相似三角形的性质与判定,勾股定理,根据对称性求最值,掌握二次函数图象的性质是解题的关键.4、 (1)(2)【解析】【分析】(1)利用待定系数法求解可得;(2)在所求函数解析式中求出时的值即可得.(1)解:设抛物线的解析式为,将点、代入,得:,解得:,所以抛物线的解析式为;(2)当时,,即,解得:,则水面的宽为.【点睛】本题主要考查二次函数的应用,解题的关键是将实际问题转化为二次函数的问题求解,并熟练掌握待定系数法求函数解析式.5、 (1)的值是500;(2)当销售单价定为35元时,每月可获得最大利润,最大利润是2250元【解析】【分析】(1)根据利润=(销售单价-进价)×销售量列方程求解即可;(2)根据利润=(销售单价-进价)×销售量得到w关于x的二次函数关系式,利用二次函数的性质求解即可.(1)解:由题意可得,,解得:,答:的值是500;(2)解:设利润为w元,由题意:,,∵-10<0,∴时,取得最大值,此时, 答:当销售单价定为35元时,每月可获得最大利润,最大利润是2250元.【点睛】本题考查一元一次方程的应用、二次函数的实际应用,理解题意,根据等量关系正确得到一元一次方程和函数关系式是解答的关键.
相关试卷
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试优秀课后测评,共32页。试卷主要包含了下列函数中,随的增大而减小的是等内容,欢迎下载使用。
这是一份初中冀教版第30章 二次函数综合与测试精品课时练习,共29页。试卷主要包含了下列函数中,随的增大而减小的是,抛物线y=﹣2,二次函数图像的顶点坐标是等内容,欢迎下载使用。
这是一份2021学年第30章 二次函数综合与测试练习题,共33页。试卷主要包含了二次函数y=ax2+bx+c等内容,欢迎下载使用。