![2021-2022学年基础强化冀教版九年级数学下册第三十章二次函数章节测试试题(含答案解析)01](http://img-preview.51jiaoxi.com/2/3/12734527/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化冀教版九年级数学下册第三十章二次函数章节测试试题(含答案解析)02](http://img-preview.51jiaoxi.com/2/3/12734527/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化冀教版九年级数学下册第三十章二次函数章节测试试题(含答案解析)03](http://img-preview.51jiaoxi.com/2/3/12734527/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版九年级下册第30章 二次函数综合与测试优秀习题
展开九年级数学下册第三十章二次函数章节测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,抛物线y=ax2+bx+c的顶点为P(﹣2,2),且与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线y=﹣x由(﹣2,2)移动到(1,﹣1),此时抛物线与y轴交于点A′,则AA′的长度为( )
A.2 B.3 C.3 D.D3
2、抛物线的函数表达式为,若将y轴向左平移3个单位长度,将x轴向下平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为( )
A. B.
C. D.
3、抛物线的对称轴是( )
A.直线 B.直线 C.直线 D.直线
4、下列函数中,二次函数是( )
A.y=﹣3x+5 B.y=x(4x﹣3)
C.y=2(x+4)2﹣2x2 D.y=
5、如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论正确的是( )
A.ac>0 B.a+b=1 C.4ac﹣b2≠4a D.a+b+c>0
6、已知,是抛物线上的点,且,下列命题正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
7、二次函数y=ax2+bx+c的图象如图所示,则一次函数y=﹣bx+c的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
8、已知二次函数,当时,随的增大而减小,则的取值范围是( )
A. B. C. D.
9、已知,是抛物线上的点,且,下列命题正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
10、如图,抛物线与轴交于点,对称轴为直线,则下列结论中正确的是( )
A.
B.当时,随的增大而增大
C.
D.是一元二次方程的一个根
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、用“描点法”画二次函数的图象时,列了如下表格:
…… | 0 | 1 | 2 | …… | |||
…… | 6.5 | …… |
当时,二次函数的函数值______
2、请写出一个开口向下且过点(0,﹣4)的抛物线表达式为 _________________.
3、已知抛物线,将此二次函数解析式用配方法化成的形式得__________,此抛物线经过两点A(-2,y1)和,则与的大小关系是_____________.
4、已知二次函数的图象经过点,那么a的值为_____.
5、将二次函数y=﹣x2+2图象向下平移3个单位,得到的函数图象顶点坐标为_____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,二次函数(m是实数,且)的图像与x轴交于A、B两点(点A在点B的左侧),其对称轴与x轴交于点C,已知点D位于第一象限,且在对称轴上,,点E在x轴的正半轴上,.连接ED并延长交y轴于点F,连接AF.
(1)求A、B、C三点的坐标(用数字或含m的式子表示);
(2)已知点Q在抛物线的对称轴上,当的周长的最小值等于,求m的值.
2、抛物线y=ax2+bx+c(a<0)与x轴交于A,B两点(点A在点B的左侧),且OA=OB,与y轴交于点C.
(1)求证:b=0;
(2)点P是第二象限内抛物线上的一个动点,AP与y轴交于点D.连接BP,过点A作AQ∥BP,与抛物线交于点Q,且AQ与y轴交于点E.
①当a=﹣1时,求Q,P两点横坐标的差;(用含有c的式子来表示)
②求的值.
3、问题呈现:探究二次函数(其中,m为常数)的图像与一次函数的图像公共点.
(1)问题可转化为:二次函数的图像与一次函数______的图像的公共点.
(2)问题解决:在如图平面直角坐标系中画出的图像.
(3)请结合(2)中图像,就m的取值范围讨论两个图像公共点的个数.
(4)问题拓展:若二次函数(其中,m为常数)的图像与一次函数的图像有两个公共点,则m的取值范围为______.
4、如图,正比例函数y1=x与二次函数y2=x2-bx的图象相交于O(0,0),A(4,4)两点.
(1)求 b 的值;
(2)当 y1 y2 时,直接写出 x 的取值范围.
5、生态水果是指在保护、改善农业生态环境的前提下,遵循生态学、生态经济学规律,运用现代科学技术,营养的、健康的水果.青岛市扶贫工作小组对李沧、胶州、即墨等多地果农进行精准投资建设,帮助果农将一种有机生态水果拓宽了市场,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了.批发销售总额比去年增加了20%
(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元?
(2)今年某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克.设水果店一天的利润为w元,当每千克的平均销售价为多少元时该水果店一天的利润最大(利润计算时,其它费用忽略不计,并且售价为整数)
-参考答案-
一、单选题
1、B
【解析】
【分析】
先运用待定系数法求出原抛物线的解析式,再根据平移不改变二次项系数,得出平移后的抛物线解析式,求出A′的坐标,进而得出AA′的长度.
【详解】
∵抛物线y=ax2+bx+c的顶点为P(﹣2,2),
∴y=a(x+2)2+2,
∵与y轴交于点A(0,3),
∴3=a(0+2)2+2,解得a=
∴原抛物线的解析式为:y=(x+2)2+2,
∵平移该抛物线使其顶点P沿直线y=﹣x由(﹣2,2)移动到(1,﹣1),
∴平移后的抛物线为y=(x﹣1)2﹣1,
∴当x=0时,y=,
∴A′的坐标为(0,),
∴AA′的长度为:3﹣()=3.
故选:B.
【点睛】
本题考查了平移、二次函数的知识;解题的关键是熟练掌握二次函数的性质,从而完成求解.
2、C
【解析】
【分析】
此题可以转化为求将抛物线“向右平移3个单位长度,向上平移3个单位长度”后所得抛物线解析式,将抛物线直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.
【详解】
解:∵抛物线的顶点坐标为 ,
∴将抛物线向右平移3个单位长度,向上平移3个单位长度后得到的抛物线顶点坐标为 ,
∴将抛物线向右平移3个单位长度,向上平移3个单位长度后得到的抛物线的解析式为,
∴将y轴向左平移3个单位长度,将x轴向下平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为.
故选:C
【点睛】
此题主要考查了二次函数图象与几何变换,正确掌握平移规律——左加右减,上加下减是解题关键.
3、B
【解析】
【分析】
由抛物线解析式的顶点式即可求得抛物线的对称轴.
【详解】
抛物线的对称轴是直线,
故选:B.
【点睛】
本题考查了抛物线的图象与性质,当抛物线的解析式为时,对称轴为直线;当抛物线的解析式为时,对称轴为直线x=h.
4、B
【解析】
【分析】
根据二次函数的定义逐个判断即可.
【详解】
解:A.函数是一次函数,不是二次函数,故本选项不符合题意;
B.是二次函数,故本选项符合题意;
C.是一次函数,不是二次函数,故本选项不符合题意;
D.不是二次函数,故本选项不符合题意;
故选:B.
【点睛】
本题考查了二次函数的定义,解题的关键是掌握:形如、、为常数,的函数,叫二次函数.
5、D
【解析】
【分析】
由抛物线开口方向及抛物线与轴交点位置,即可得出、,进而判断结论A;由抛物线顶点的横坐标可得出,进而判断结论B;由抛物线顶点的纵坐标可得出,进而判断结论C;由、,进而判断结论D.由此即可得出结论.
【详解】
解:A、抛物线开口向下,且与轴正半轴相交,
,,
,结论A错误,不符合题意;
B、抛物线顶点坐标为,,
,
,即,结论B错误,不符合题意;
C、抛物线顶点坐标为,,
,
,结论C错误,不符合题意;
D、,,
,结论D正确,符合题意.
故选:D.
【点睛】
本题考查了二次函数图象与系数的关系以及二次函数的性质,解题的关键是观察函数图象,逐一分析四个选项的正误.
6、A
【解析】
【分析】
根据抛物线解析式可确定对称轴为,根据点与对称轴的距离的大小以及函数值的大小关系即可判断的符号,即开口方向
【详解】
解:∵的对称轴为,且
∴若,
则离对称轴远,则抛物线的开口朝下,即,故A正确
若,
则离对称轴远,则抛物线的开口朝上,即,故C不正确
对于B,D选项不能判断的符号
故选A
【点睛】
本题考查了二次函数图象的性质,掌握的性质是解题的关键.
7、D
【解析】
【分析】
根据二次函数图象的开口方向、对称轴判断出a、b的正负情况,再由一次函数的性质解答.
【详解】
解:由势力的线与y轴正半轴相交可知c>0,
对称轴x=-<0,得b<0.
∴
所以一次函数y=﹣bx+c的图象经过第一、二、三象限,不经过第四象限.
故选:D.
【点睛】
本题考查二次函数图象和一次函数图象的性质,要掌握它们的性质才能灵活解题.
8、D
【解析】
【分析】
先求出对称轴x=,再由已知可得 b≥1,即可求b的范围.
【详解】
解:∵,
∴对称轴为直线x=b,开口向下,
在对称轴右侧,y随x的增大而减小,
∵当x>1时,y随x的增大而减小,
∴1不在对称轴左侧,
∴b≤1,
故选:D.
【点睛】
本题考查二次函数的图象与系数的关系,熟练掌握二次函数的图象及性质,充分理解对称轴与函数增减性之间的关系是解题的关键.
9、C
【解析】
【分析】
先求出抛物线对称轴,再根据两个点距对称轴距离判断即可.
【详解】
解:抛物线的对称轴为:直线,
∵,
当,点到对称轴的距离近,即,当,点到对称轴的距离远,即,
故选:C.
【点睛】
本题考查了二次函数的性质,解题关键是求出抛物线的对称轴,根据点距对称轴的远近,进行判断开口.
10、D
【解析】
【分析】
根据二次函数图象的开口方向向下可得是负数,对称轴位于轴的右侧可得、异号;与轴的交点在正半轴可得是正数,根据二次函数的增减性可得选项错误,根据抛物线的对称轴结合与轴的一个交点的坐标可以求出与轴的另一交点坐标,也就是一元二次方程的根,从而得解.
【详解】
解:、根据图象,二次函数开口方向向下,则,对称轴位于轴的右侧可得、异号,即,故本选项结论错误;
B、当时,随的增大而减小,故本选项结论错误;
C、根据图象,抛物线与轴的交点在正半轴,则,故本选项结论错误;
D、抛物线与轴的一个交点坐标是,对称轴是直线,
设另一交点为,
,
,
另一交点坐标是,
是一元二次方程的一个根,
故本选项结论正确.
故选:D.
【点睛】
本题主要考查了二次函数图象与系数的关系,二次函数图象的增减性,抛物线与轴的交点问题,熟记二次函数的性质以及函数图象与系数的关系是解题的关键.
二、填空题
1、-4
【解析】
【分析】
由表格得出抛物线的对称轴,根据二次函数的对称性解答可得.
【详解】
解:由表格可知当x=0和x=2时,y=-2.5,
∴抛物线的对称轴为x=1,
∴x=3和x=-1时的函数值相等,为-4,
故答案为:-4.
本题主要考查了二次函数图象上点的坐标特征,根据表格得出抛物线的对称轴是解题的关键.
2、y=﹣x2﹣4(答案不唯一)
【解析】
【分析】
根据二次函数的性质,二次项系数小于0时,函数图象的开口向下,再利用过点(0,﹣4)得出即可.
【详解】
解:∵抛物线开口向下且过点(0,﹣4),
∴可以设顶点坐标为(0,﹣4),
故解析式为:y=﹣x2﹣4(答案不唯一).
故答案为:y=﹣x2﹣4(答案不唯一).
【点睛】
本题考查了二次函数图象的性质,是开放型题目,答案不唯一.
3、
【解析】
【分析】
(1)利用配方法将二次函数的一般式转化为顶点式;(2)将与分别代入二次函数解析式中,计算出与的值,并比较大小.
【详解】
(1)解:,
故答案为:.
(2)当 时,
当时,
∴ 与的大小关系是,
故答案为:.
【点睛】
本题考查用配方法将二次函数的一般式转化为顶点式,以及二次函数的增减性,熟练掌握配方法是解决本题的关键.
4、
【解析】
【分析】
把已知点的坐标代入抛物线解析式可得到的值.
【详解】
解:二次函数的图象经过点,
,
解得:.
故答案为:.
【点睛】
本题考查了待定系数法求二次函数解析式,解题的关键是掌握二次函数图象上点的坐标满足其解析式.
5、(0,-1)
【解析】
【分析】
直接根据“上加下减,左加右减”的原则进行解答即可.
【详解】
解:将二次函数y=-x2+2图象向下平移3个单位,
得到y=-x2+2-3=-x2-1,
顶点坐标为(0,-1),
故答案为:(0,-1).
【点睛】
本题考查的是二次函数的图象与几何变换,熟知函数图象几何变换的法则是解答此题的关键.
三、解答题
1、 (1),,
(2)
【解析】
【分析】
(1)把代入函数解析式,可得,再利用因式分解法解方程可得的坐标,再求解函数的对称轴,可得的坐标;
(2)先证明,利用相似三角形的性质求解,利用三角形的中位线定理再求解.再利用勾股定理求解,如图,当点、、三点共线时,的长最小,此时的周长最小.可得.再利用勾股定理列方程,解方程可得答案.
(1)
令 则,
∴,,
∴对称轴为直线,
∴.
(2)
在中,
,
∴∠ODC=∠CBD,
,
,.
.
∵轴,轴,
∴.
∵,
∴.
∴.
在中,,
∴,即.(负根舍去)
∵点与点关于对称轴对称,
∴.
∴如图,当点、、三点共线时,的长最小,此时的周长最小.
∴的周长的最小值为,
∴的长最小值为,即.
∵,
∴.
∴.
∵,
∴.
【点睛】
本题考查了二次函数与坐标轴的交点问题,二次函数图象的性质,相似三角形的性质与判定,勾股定理,根据对称性求最值,掌握二次函数图象的性质是解题的关键.
2、 (1)见解析
(2)①2;②2.
【解析】
【分析】
(1)利用根与系数的关系即可证明b=0;
(2)①设出P点坐标,然后令c=t²,然后表示出A、B的坐标,先求出直线BP的解析式,即可得到直线AQ的解析式,然后联立抛物线与直线AQ解析式,求出Q点横坐标,即可求解;②同①的方法,令a=-s²,c=t²,设出P点坐标,分别求出D、E的坐标,代入计算即可求解.
(1)
解:设方程ax2+bx+c=0两根为x1,x2,
∵抛物线y=ax2+bx+c(a<0)与x轴交于A,B两点,且OA=OB,
∴x1=-x2,即x1+x2=0,
∵x1+x2=-,
∴-=0,
∵a<0,
∴b=0;
(2)
解:①当a=﹣1时,令c=t2,抛物线的解析式为y=-x2+t2,
解方程-x2+t2=0,得:x1=t,x2=-t,
∴A(-t,0),B(t,0),
设点P的坐标为(p,-p2+ t2),
设直线PB的解析式为y=kx+m,
∴,解得:,
∴直线PB的解析式为y=x+,
∵AQ∥BP,
设直线AQ的解析式为y=x+n,
把A(-t,0)代入得:n=
∴直线AQ的解析式为y=,
联立y=和y=-x2+ t2得:,
整理得:,
解得x1=-t,x2=p+2t,
∴点Q的横坐标为p+2t,
∴Q,P两点横坐标的差为p+2t-p=2t=2;
②令c=t2,a=-s²,抛物线的解析式为y=-s²x2+t2,
解方程-s²x2+t2=0,得:x1=,x2=-,
∴A(-,0),B(,0),C(0,t2),
设点P的坐标为(p,-s²p2+ t2),
同理求得直线PB的解析式为y=x+,
直线AQ的解析式为y=,
令x=0,则y=,
即点E的坐标为(0,),
同理求得直线AP的解析式为y=,
令x=0,则y=,
即点D的坐标为(0,),
∴OD=,OE=,OC=,
∴.
.
【点睛】
本题是二次函数综合题,考查了待定系数法求函数解析式,解一元二次方程,一元二次方程的根与系数的关系等知识点,解答本题的关键是明确题意,找出所求问题需要的条件,画出相应的图形,利用数形结合的思想解答.
3、 (1)
(2)见解析
(3)或或,两个图像公共点的个数为1个;时,两个图像公共点的个数为2个;或时,两个图像公共点的个数为0个;
(4)
【解析】
【分析】
(1)令,整理得:,可以转化为二次函数的图像与一次函数图像的公共点;
(2)先在坐标轴上描出点,再连线即可;
(3)通过数形结合的方式进行分类讨论;
(4)通过数形结合的方式,分当时;当时;注意当时,要使有两个公共点,则满足,求解即可.
(1)
解:令,
整理得:,
可以转化为二次函数的图像与一次函数图像的公共点,
故答案为:;
(2)
解:先在坐标轴上描出点,
再连线即可,如下图:
(3)
解:如图:
当时,与有一个交点,
当时,与有两个交点,
当时,与有一个交点,
综上:或或,两个图像公共点的个数为1个;时,两个图像公共点的个数为2个;或时,两个图像公共点的个数为0个;
(4)
解:如下图:
当时,(其中,m为常数)与有一个交点有一个公共点;
当时,(其中,m为常数)与没有公共点;
要使(其中,m为常数)与有两个公共点,则满足
且,
解得:且,
,
故时,(其中,m为常数)与有两个公共点,
故答案为:.
【点睛】
本题考查了二次函数与一次函数的综合,函数图象的交点问题,解题的关键是利用数形结合、分类讨论、转化的思想进行求解.
4、 (1)
(2)或
【解析】
【分析】
(1)将点A(4,4)代入进行解答即可得;
(2)由图像即可得.
(1)
解:将点A(4,4)代入得,
解得.
(2)
解:由图像可知,当或时,.
【点睛】
本题考查了正比函数,二次函数,解题的关键是掌握正比函数的性质和二次函数的性质.
5、 (1)24元;
(2)当m=35时,w最大=7260元.
【解析】
【分析】
(1)设去年这种水果的批发价为x元/千克,今年的销量-去年的销量=1000列方程解方程即可;
(2)设每千克的平均销售价为m元,根据总利润=每千克利润×销量列函数关系式w=(m-24)(300+)配方为顶点式,利用函数性质求即即可.
(1)
解:设去年这种水果的批发价为x元/千克,
根据题意得:,
整理得:3000-2400=24x,
解得x=25,
经检验符合题意,
元;
(2)
解:设每千克的平均销售价为m元,
w=(m-24)(300+),
=,
=,
∵a=-60<0,
抛物线开口向下,函数有最大值,
当m=35时,w最大=7260元.
【点睛】
本题考查列分式方程解应用题,列二次函数解应用题,掌握列分式方程解应用题的方法与步骤,列二次函数解应用题方法是解题关键.
初中数学冀教版九年级下册第30章 二次函数综合与测试精品练习题: 这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试精品练习题,共30页。
冀教版九年级下册第30章 二次函数综合与测试优秀同步测试题: 这是一份冀教版九年级下册第30章 二次函数综合与测试优秀同步测试题,共35页。
数学九年级下册第30章 二次函数综合与测试优秀当堂检测题: 这是一份数学九年级下册第30章 二次函数综合与测试优秀当堂检测题,共28页。试卷主要包含了一次函数与二次函数的图象交点,二次函数y=ax2﹣4ax+c等内容,欢迎下载使用。