初中鲁教版 (五四制)第五章 基本平面图形综合与测试测试题
展开
这是一份初中鲁教版 (五四制)第五章 基本平面图形综合与测试测试题,共26页。试卷主要包含了已知,则的补角的度数为,下列现象等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将三角尺与直尺按如图所示摆放,下列关于∠α与∠β之间的关系一定正确的是( )A.∠α=∠β B.∠α=∠β C.∠α+∠β=90° D.∠α+∠β=180°2、如图,木工师傅过木板上的A,B两点,弹出一条笔直的墨线,这种操作所蕴含的数学原理是( )A.过一点有无数条直线 B.两点确定一条直线C.两点之间线段最短 D.线段是直线的一部分3、芳芳放学从校门向东走400米,再往北走200米到家;丽丽出校门向东走200米到家,则丽丽家在芳芳家的( )A.东南方向 B.西南方向 C.东北方向 D.西北方向4、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )A. B. C. D.5、已知,则的补角的度数为( )A. B. C. D.6、一个多边形从一个顶点引出的对角线条数是4条,这个多边形的边数是( )A.5 B.6 C.7 D.87、下列现象:①用两个钉子就可以把木条固定在墙上②从A地到B地架设电线,总是尽可能沿着线段AB架设③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线④把弯曲的公路改直,就能缩短路程其中能用“两点之间线段最短”来解释的现象有( )A.①④ B.①③ C.②④ D.③④8、钟表上1时30分时,时针与分针所成的角是( )A. B. C. D.以上答案都不对9、如图,已知C为线段AB上一点,M、N分别为AB、CB的中点,若AC=8cm,则MC+NB的长为( )A.3cm B.4cm C.5cm D.6cm10、如图所示,若,则射线OB表示的方向为( ).A.北偏东35° B.东偏北35° C.北偏东55° D.北偏西55°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、阳阳在月月的西南方向200m处,则月月在阳阳的_____方向_____m处.2、修路时,通常把弯曲的公路改直,这样可以缩短路程,其根据的数学道理是______.3、如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,则∠BOE=_____.(用含α的式子表示)4、点A、B、C三点在同一条直线上,AB=10cm,BC=6cm,则AC =___ cm.5、式子的最小值是______.三、解答题(5小题,每小题10分,共计50分)1、如图,直线、相交于点,,.(1)若,则 __________.(2)从(1)的时刻开始,若将绕以每秒15的速度逆时针旋转一周,求运动多少秒时,直线平分.(3)从(1)的时刻开始,若将绕点逆时针旋转一周,如果射线是的角平分线,请直接写出此过程中与的数量关系.(不考虑与、重合的情况)2、如图,O为直线AB上一点,与互补,OM,ON分别是,的平分线.(1)根据题意,补全下列说理过程:∵与互补,∴.又___________=180°,∴∠_________=∠_________.(2)若,求的度数.(3)若,则(用表示).3、已知,,,分别平分,.(1)如图1,当,重合时, 度;(2)若将的从图1的位置绕点顺时针旋转,旋转角,满足且.①如图2,用等式表示与之间的数量关系,并说明理由;②在旋转过程中,请用等式表示与之间的数量关系,并直接写出答案.4、课上,老师提出问题:如图,点O是线段上一点,C,D分别是线段AO,BO的中点,当AB=10时,求线段CD的长度.(1)下面是小明根据老师的要求进行的分析及解答过程,请你补全解答过程;思路方法解答过程知识要素未知线段已知线段……因为C,D分别是线段AO,BO的中点,所以CO=AO,DO= .因为AB=10,所以CD=CO+DO=AO+ = = .线段中点的定义线段的和、差等式的性质 (2)小明进行题后反思,提出新的问题:如果点O运动到线段AB的延长线上,CD的长度是否会发生变化?请你帮助小明作出判断并说明理由.5、如图,已知线段a,b,c,用尺规求作一条线段AB,使得AB=a+b﹣2c.(不写作法,保留作图痕迹) -参考答案-一、单选题1、C【解析】【分析】如果两个角的和等于90°(直角),就说这两个角互为余角,由题意可知∠α与∠β互余,即∠α+∠β=90°.【详解】解:∠α+∠β=180°﹣90°=90°,故选:C.【点睛】本题主要考查了余角,如果两个角的和等于90°(直角),就说这两个角互为余角.2、B【解析】【分析】根据“经过两点有且只有一条直线”即可得出结论.【详解】解:∵经过两点有且只有一条直线,∴经过木板上的A、B两个点,只能弹出一条笔直的墨线.∴能解释这一实际应用的数学知识是两点确定一条直线.故选:B.【点睛】本题考查了直线的性质,掌握“经过两点有且只有一条直线”是解题的关键.3、B【解析】略4、D【解析】【分析】根据题意得出∠1=15°,再求∠1补角即可.【详解】由图形可得∴∠1补角的度数为故选:D.【点睛】本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.5、C【解析】【分析】两个角的和为 则这两个角互补,利用补角的含义直接列式计算即可.【详解】解: , 的补角 故选C【点睛】本题考查的是互为补角的含义,掌握“两个角的和为 则这两个角互补”是解本题的关键.6、C【解析】【分析】根据从n边形的一个顶点引出对角线的条数为(n-3)条,可得答案.【详解】解:∵一个n多边形从某个顶点可引出的对角线条数为(n-3)条,而题目中从一个顶点引出4条对角线,∴n-3=4,得到n=7,∴这个多边形的边数是7.故选:C.【点睛】本题考查了多边形的对角线,从一个顶点引对角线,注意相邻的两个顶点不能引对角线.7、C【解析】【分析】直接利用直线的性质和线段的性质分别判断得出答案.【详解】解:①用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;②从A地到B地架设电线,总是尽可能沿着线段AB架设,能用“两点之间,线段最短”来解释,故此选项符合题意;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;④把弯曲的公路改直,就能缩短路程,能用“两点之间,线段最短”来解释,故此选项符合题意.故选:C.【点睛】本题考查了直线的性质和线段的性质,正确掌握相关性质是解题关键.8、C【解析】【分析】钟表上12个大格把一个周角12等分,每个大格30°,1点30分时针与分针之间共4.5个大格,故时针与分针所成的角是4.5×30°=135°.【详解】解:∵1点30分,时针指向1和2的中间,分针指向6,中间相差4格半,钟表12个数字,每相邻两个数字之间的夹角为30°,∴1点30分分针与时针的夹角是4.5×30°=135°.故选:C.【点睛】本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.9、B【解析】【分析】设MC=xcm,则AM=(8﹣x)cm,根据M、N分别为AB、CB的中点,得到BM=(8﹣x)cm,NB=(4﹣x)cm,再求解MC+NB即可.【详解】解:设MC=xcm,则AM=AC﹣MC=(8﹣x)cm,∵M为AB的中点,∴AM=BM,即BM=(8﹣x)cm,∵N为CB的中点,∴CN=NB,∴NB,∴MC+NB=x+(4﹣x)=4(cm),故选:B.【点睛】本题考查的是两点间的距离的计算,掌握线段中点的性质、解题的关键是灵活运用数形结合思想.10、A【解析】【分析】根据同角的余角相等即可得,,根据方位角的表示方法即可求解.【详解】如图,即射线OB表示的方向为北偏东35°故选A【点睛】本题考查了方位角的计算,同角的余角相等,掌握方位角的表示方法是解题的关键.二、填空题1、 东北 200【解析】【分析】根据方向角的定义解答即可.【详解】解:阳阳在月月的西南方向m处,则月月在阳阳的东北方向m处.故答案为:东北,200.【点睛】本题考查方向角,解题的关键是理解题意,灵活运用所学知识解决问题.2、两点之间线段最短【解析】【分析】根据“两点之间线段最短”解答即可.【详解】解:修路时,通常把弯曲的公路改直,这样可以缩短路程,其根据的数学道理是:两点之间线段最短.故答案为:两点之间线段最短.【点睛】本题考查了线段的性质,熟练掌握熟练掌握两点之间线段最短是解答本题的关键.3、360°-4α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=3∠DOE,可得∠BOD=3x,由平角∠AOB=180°列出关于x的一次方程式,求解即可.【详解】解:设∠DOE=x,∵OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,∴∠AOC=∠COD=α-x,∠BOD=3x, 由∠BOD+∠AOD=180°,∴3x+2(α-x )=180°解得x=180°-2α,∴∠BOE=∠BOD-∠DOE=3x-x=2x=2(180°-2α)=360°-4α,故答案为:360°-4α.【点睛】本题考查了角平分线的定义,平角的定义,一元一次方程的应用,掌握角平分线的定义是解题的关键.4、16或4##4或16【解析】【分析】分两种情况讨论,当在的右边时,当在的左边时,再结合线段的和差可得答案.【详解】解:如图,当在的右边时,AB=10cm,BC=6cm,cm,如图,当在的左边时,AB=10cm,BC=6cm,cm,故答案为:16或4【点睛】本题考查的是线段的和差关系,利用C的位置进行分类讨论是解本题的关键.5、16【解析】【分析】画出数轴,根据两点间的距离公式解答.【详解】解:如图1,当点P与点C重合时,点P到A、B、C、D、E各点的距离之和为:PA+PB+PC+PD+PE=(PA+PE)+(PB+PD)+PC=AE+BD+0=AE+BD;如图2,当点P与点C不重合时,点P到A、B、C、D、E各点的距离之和为:PA+PB+PC+PD+PE=(PA+PE)+(PB+PD)+PC=AE+BD+PC;∵AE+BD+PC> AE+BD,∴当点P与点C重合时,点P到A、B、C、D、E各点的距离之和最小,令数轴上数x表示的为P,则表示点P到A、B、C、D、E各点的距离之和,∴当x=2时,取得最小值,∴的最小值==5+3+0+3+5=16,故答案为:16.【点睛】本题考查了绝对值意义、数轴上两点间的距离,数形结合是解答本题的关键.三、解答题1、 (1)30°(2)11或23秒(3)或【解析】【分析】(1)根据,,利用余角性质得出∠EOB=90°-∠COE=90°-30°=60°,根据,利用余角性质得出∠BOF=90°-∠EOB=90°-60°=30°即可;(2)解分两种情形,平分,得出,,设运动秒时 根据运动转过的角度列方程,平分,,根据运动转过的角度列方程,解方程即可;(3)分四种情况OE在∠COB内,OE在∠AOC内,OE在∠AOD内,OE在∠DOB内,根据射线是的角平分线∠COP=∠EOP,利用角的和差计算即可.(1)解:∵,,∴∠EOB=90°-∠COE=90°-30°=60°,∵,∴∠BOF=90°-∠EOB=90°-60°=30°,故答案是:30°;(2)解分两种情形,情况一∵平分,∴,∴,设运动秒时,平分,根据题意得:,解得:;情况二∵平分,∴,设运动秒时,平分,根据题意得:,解得:;综上:运动11或23秒时,直线平分;(3)解:∵射线是的角平分线∴∠COP=∠EOP,∠AOC=∠EOF=90°,∴∠AOP=90°+∠COP=90°+∠POE,∵∠COE=∠BOF,∴∠POE=,∴,∵∠COE=∠BOF,射线是的角平分线,∴∠POC=,∴∠AOP=90°-∠COP=90°-,∴,∵∠COE=90°+∠COF=∠BOF,射线是的角平分线,∴∠POC=,∴∠AOP=90°-∠COP=90°-,∴,∵∠COE=90°+∠BOE=∠BOF,射线是的角平分线,∴∠POC=,∴∠AOP=90°+∠COP=90°+,∴;综上:或.【点睛】本题考查余角定义,角平分线有关的运算,一元一次方程,分类讨论思想的应用,掌握余角定义,角平分线有关的运算,一元一次方程,分类讨论思想的应用是解题关键.2、 (1)BOC; AOD;BOC;(2)22°.(3).【解析】【分析】(1)根据与互补,得出.根据 BOC =180°,利用同角的补角性质得出∠AOD=∠BOC.(2)根据OM是∠AOC的平分线.得出∠AOC=2∠MOC=2×68°=136°,根据∠AOC与∠AOD互补,求出∠AOD=180°﹣136°=44°,再根据ON是∠AOD的平分线.可得∠AON=∠AOD=22°.(3)根据OM是∠AOC的平分线.得出∠AOC=2,根据∠AOC与∠AOD互补,可求∠AOD=180°﹣,根据ON是∠AOD的平分线.得出∠AON=∠AOD=.(1)解:∵与互补,∴.又 BOC =180°,∴∠AOD=∠BOC.故答案为:BOC; AOD;BOC;(2)解:∵OM是∠AOC的平分线.∴∠AOC=2∠MOC=2×68°=136°,∵∠AOC与∠AOD互补,∴∠AOD=180°﹣136°=44°,∵ON是∠AOD的平分线.∴∠AON=∠AOD=22°.(3)解:∵OM是∠AOC的平分线.∴∠AOC=2,∵∠AOC与∠AOD互补,∴∠AOD=180°﹣,∵ON是∠AOD的平分线.∴∠AON=∠AOD=.【点睛】本题考查补角性质,同角的补角性质,角平分线定义,角的和差倍分计算,掌握补角性质,同角的补角性质,角平分线定义,角的和差倍分计算是解题关键.3、 (1)(2)①;②时,;时,【解析】【分析】(1)由题意得出,,由角平分线定义得出,,即可得出答案;(2)①由角平分线定义得出,,求出,即可得出答案;②由①得,,当时,求出,,即可得出答案;当时,求出,,即可得出答案.(1),重合,,,平分,平分,,,;(2)①;理由如下:平分,平分,,,,;②由①得:,,当时,如图2所示:,,,∴当时,如图3所示:,,;∴综上所述,时,;时,【点睛】本题考查了角的计算、角平分线定义等知识;弄清各个角之间的数量关系是解题的关键.4、 (1)BO,BO,AB,5(2)不变,见解析【解析】【分析】(1)根据已知条件及解答过程中的每步推理即可完成;(2)由线段中点的定义及线段的差即可完成.(1)因为C,D分别是线段AO,BO的中点,所以CO=AO,DO=.因为AB=10,所以CD=CO+DO=AO+BO =AB=5.故答案为:BO,BO,AB,5(2)不会发生变化:理由如下:如图因为C,D分别是线段AO,BO的中点,所以,.因为,所以.【点睛】本题考查了线段中点的定义,线段的和、差等知识,掌握这些知识是关键.5、见解析【解析】【分析】在射线AM上截取线段,,在线段CD上截取线段,则线段AB即为所求作.【详解】解:如图,在射线AM上截取线段,,在线段CD上截取线段,线段AB即为所求作.【点睛】题目主要考查作一条线段等于已知线段的和差,熟练掌握线段的作法是解题关键.
相关试卷
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时练习,共22页。试卷主要包含了延长线段至点,分别取等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后测评,共19页。试卷主要包含了上午10,下列命题中,正确的有等内容,欢迎下载使用。
这是一份数学六年级下册第五章 基本平面图形综合与测试课时训练,共24页。试卷主要包含了若的补角是,则的余角是,上午10,下列现象等内容,欢迎下载使用。