初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀一课一练
展开六年级数学下册第五章基本平面图形定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若,则的补角的度数为( )
A. B. C. D.
2、如图所示,B、C是线段AB上任意两点,M是AB的中点,N是CD的中点,若,,则线段AD的长是( )
A.15 B.17 C.19 D.20
3、上午8:30时,时针和分针所夹锐角的度数是( )
A.75° B.80° C.70° D.67.5°
4、下列现象:
①用两个钉子就可以把木条固定在墙上
②从A地到B地架设电线,总是尽可能沿着线段AB架设
③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线
④把弯曲的公路改直,就能缩短路程
其中能用“两点之间线段最短”来解释的现象有( )
A.①④ B.①③ C.②④ D.③④
5、如图,将三个三角板直角顶点重叠在一起,公共的直角顶点为点,若,,那么的度数为( )
A. B. C. D.
6、如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是( )
A.105° B.125° C.135° D.145°
7、如图,将一块三角板60°角的顶点与另一块三角板的直角顶点重合,,的大小是( )
A. B. C. D.
8、木匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是( )
A.两点之间线段最短 B.过一点有无数条直线
C.两点确定一条直线 D.两点之间线段的长度叫做这两点之间的距离
9、如图,OM平分,,,则( )
A.96° B.108° C.120° D.144°
10、芳芳放学从校门向东走400米,再往北走200米到家;丽丽出校门向东走200米到家,则丽丽家在芳芳家的( )
A.东南方向 B.西南方向 C.东北方向 D.西北方向
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,则∠BOE=_____.(用含α的式子表示)
2、如图所示,点C在线段上,,点D是线段的中点.若,则的长为________.
3、如图,点B是线段AC上一点,且AB=15cm,,点O是线段AC的中点,则线段OB=______.
4、如图,是直线上的一点,和互余,平分,若,则的度数为__________.(用含的代数式表示)
5、90°-32°51′18″=______________.
三、解答题(5小题,每小题10分,共计50分)
1、规定:A,B,C是数轴上的三个点,当CA=3CB时我们称C为的“三倍距点”,当CB=3CA时,我们称C为的“三倍距点”, 点A所表示的数为a,点B所表示的数为b且a,b满足(a+3)2+|b﹣5|=0.
(1)a= ,b= ;
(2)若点C在线段AB上,且为[A,B]的“三倍距点”,则点C表示的数为 ;
(3)点M从点A出发,同时点N从点B出发,沿数轴分别以每秒3个单位长度和每秒1个单位长度的速度向右运动,设运动时间为秒,当为M,N两点的“三倍距点”时,求t的值.
2、如图,已知平面上三点A,B,C,请按要求完成下列问题:
(1)画射线AC,线段BC;
(2)连接AB,并用圆规在线段AB的延长线上截取BD=BC,连接CD(保留画图痕迹);
(3)利用刻度尺取线段CD的中点E,连接BE;
(4)通过测量猜测线段BE和AB之间的数量关系.
3、如图1将线段AB,CD放置在直线l上,点B与点C重合,AB=10cm,CD=15cm,点M是线段AC的中点,点N是线段BD的中点.解答下列问题:
(1)MN=
(2)将图1中的线段AB沿DC延长线方向移动xcm至图2的位置.
①当x=7cm时,求MN的长.
②在移动的过程中,请直接写出MN,AB,CD之间的数量关系式.
4、如图,在直线上顺次取A、B、C三点,使得AB=40cm,BC=280cm.点P、点Q分别由A点、B点同时出发向点C运动,运用时间为t(单位:s),点P的速度为3cm/s,点Q的速度为1cm/s
(1)请求出线段AC的长;
(2)若点D是线段AC的中点,请求出线段BD的长;
(3)请求出点P出发多少秒后追上点Q?
(4)请计算出点P出发多少秒后,与点Q的距离是20cm?
5、(1)如图l,点D是线段AC的中点,且 AB=BC,BC=6,求线段BD的长;
(2)如图2,已知OB平分∠AOD,∠BOC=∠AOC,若∠AOD=100°,求∠BOC的度数.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据补角的性质,即可求解.
【详解】
解:∵,
∴的补角的度数为.
故选:C
【点睛】
本题主要考查了补角的性质,熟练掌握互为补角的两个角的和等于180°是解题的关键.
2、D
【解析】
【分析】
由M是AB的中点,N是CD的中点,可得先求解 从而可得答案.
【详解】
解: M是AB的中点,N是CD的中点,
故选D
【点睛】
本题考查的是线段的中点的含义,线段的和差运算,熟练的利用线段的和差关系建立简单方程是解本题的关键.
3、A
【解析】
【分析】
根据钟面平均分成12份,可得每份的度数;根据时针与分针相距的份数乘以每份的度数,可得答案.
【详解】
解:钟面平均分成12份,钟面每份是30°,上午8:30时时针与分针相距2.5份,
此时时钟的时针与分针所夹的角(小于平角)的度数是30°×2.5=75°.
故选:A.
【点睛】
本题考查了钟面角,时针与分针相距的份数乘以每份的度数是解题关键.
4、C
【解析】
【分析】
直接利用直线的性质和线段的性质分别判断得出答案.
【详解】
解:①用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;
②从A地到B地架设电线,总是尽可能沿着线段AB架设,能用“两点之间,线段最短”来解释,故此选项符合题意;
③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;
④把弯曲的公路改直,就能缩短路程,能用“两点之间,线段最短”来解释,故此选项符合题意.
故选:C.
【点睛】
本题考查了直线的性质和线段的性质,正确掌握相关性质是解题关键.
5、B
【解析】
【分析】
根据∠ABE=45°,由角的和差关系求出∠CBG,再根据∠GBH=30°,由角的和差关系求出∠FBG,最后根据∠FBC=∠FBG-∠CBG进行计算即可.
【详解】
解:∵∠ABE=45°,
∴∠CBE=45°,
∴∠CBG=45°,
∵∠GBH=30°,
∴∠FBG=60°,
∴∠FBC=∠FBG-∠CBG=60°-45°=15°.
故选B.
【点睛】
此题考查了角的和差计算,关键是根据已知条件求出角的度数,要能根据图形找出角之间的关系.
6、B
【解析】
【分析】
由题意知计算求解即可.
【详解】
解:由题意知
故答案为:B.
【点睛】
本题考查了方位角的计算.解题的关键在于正确的计算.
7、B
【解析】
【分析】
根据∠BAC=60°,∠1=27°20′,求出∠EAC的度数,再根据∠2=90°-∠EAC,即可求出∠2的度数.
【详解】
解:∵∠BAC=60°,∠1=27°20′,
∴∠EAC=32°40′,
∵∠EAD=90°,
∴∠2=90°-∠EAC=90°-32°40′=57°20′;
故选:B.
【点睛】
本题主要考查了与三角板有关的角度计算,解题的关键是能够正确求出∠EAC的度数.
8、C
【解析】
【分析】
结合题意,根据直线的性质:两点确定一条直线进行分析,即可得到答案.
【详解】
结合题意,匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是:两点确定一条直线
故选:C.
【点睛】
本题考查了直线的知识;解题的关键是熟练掌握直线的性质,从而完成求解.
9、B
【解析】
【分析】
设,利用关系式,,以及图中角的和差关系,得到、,再利用OM平分,列方程得到,即可求出的值.
【详解】
解:设,
∵,
∴,
∴.
∵,
∴,
∴.
∵OM平分,
∴,
∴,解得.
.
故选:B.
【点睛】
本题通过图形中的角的和差关系,利用方程的思想求解角的度数.其中涉及角的平分线的理解:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.
10、B
【解析】
略
二、填空题
1、360°-4α
【解析】
【分析】
设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=3∠DOE,可得∠BOD=3x,由平角∠AOB=180°列出关于x的一次方程式,求解即可.
【详解】
解:设∠DOE=x,
∵OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,
∴∠AOC=∠COD=α-x,∠BOD=3x,
由∠BOD+∠AOD=180°,
∴3x+2(α-x )=180°
解得x=180°-2α,
∴∠BOE=∠BOD-∠DOE=3x-x=2x=2(180°-2α)=360°-4α,
故答案为:360°-4α.
【点睛】
本题考查了角平分线的定义,平角的定义,一元一次方程的应用,掌握角平分线的定义是解题的关键.
2、
【解析】
【分析】
先求解 再利用线段的和差关系求解 再利用线段的中点的含义求解即可.
【详解】
解:
点D是线段的中点,
故答案为:
【点睛】
本题考查的是线段的和差关系,线段的中点的含义,掌握“线段的和差关系”是解本题的关键.
3、5cm
【解析】
【分析】
先求出AC,再由中点定义求出CO即可得到OB.
【详解】
解:∵AB=15cm,,
∴AC=AB+BC=15+5=20(cm);
∵点O是线段AC的中点,
∴CO=AC=×20=10(cm),
∴OB=CO﹣BC=10﹣5=5(cm).
故答案为:5cm.
【点睛】
此题考查了线段的和与差计算,正确掌握线段中点的定义及各线段之间的位置关系是解题的关键.
4、2m
【解析】
【分析】
根据互余定义求得∠DOC=90°,由此得到∠COE=90°-m,根据角平分线的定义求得∠BOC的度数,利用互补求出答案.
【详解】
解:∵和互余,
∴+=90°,
∴∠DOC=90°,
∵,
∴∠COE=90°-m,
∵平分,
∴∠BOC=2∠COE=180°-2m,
∴=180°-∠BOC=2m,
故答案为:2m.
【点睛】
此题考查了角平分线的定义,余角的定义,补角的定义,正确理解图形中各角度的关系并进行推理论证是解题的关键.
5、
【解析】
【分析】
根据度分秒的减法,相同单位相减,不够减时向上一单位借1当60 再减,可得答案.
【详解】
解:90°-32°51′18″=89°60′-32°51′18″=89°59′60″-32°51′18″′=57°8′42″.
故答案为:57°8′42″.
【点睛】
本题考察了度分秒的换算,度分秒的减法,相同单位相减,不够减时向上一单位借1当60 再减.1°=60′,1′=60″.
三、解答题
1、 (1)
(2)3
(3) 或或
【解析】
【分析】
(1)利用非负数的性质可得: 再解方程可得答案;
(2)由新定义可得 从而可得答案;
(3)当运动时间为秒时,对应的数为 对应的数为 根据新定义分两种情况讨论:当时,则 当时,则 再解方程可得答案.
(1)
解:
解得:
故答案为:
(2)
解: 点C在线段AB上,且为[A,B]的“三倍距点”,
点对应的数为:
故答案为:3
(3)
解:当运动时间为秒时,对应的数为 对应的数为
当时,则
或
解得:,而无解,
当时,则 即
或
解得:或
【点睛】
本题考查的是数轴上的动点问题,平方与绝对值非负性的应用,绝对值方程的应用,一元一次方程的应用,线段的和差倍分关系,熟练的利用方程解决动点问题是解本题的关键.
2、 (1)见解析
(2)见解析
(3)见解析
(4),猜测
【解析】
【分析】
(1)根据题意画射线AC,线段BC;
(2)根据题意,连接AB,并用圆规在线段AB的延长线上截取BD=BC,连接CD;
(3)根据题意,利用刻度尺取线段CD的中点E,连接BE;
(4)测量线段BE和AB的长度,进而求得猜测BE和AB之间的数量关系.
(1)
如图所示,射线AC,线段BC即为所求;
(2)
如图所示,连接AB,在线段AB的延长线上截取BD=BC,连接CD;
(3)
如图所示,取线段CD的中点E,连接BE;
(4)
通过测量,猜测
【点睛】
本题考查了直线、射线、线段以及线段的中点,正确区分直线、线段、射线是解题关键.
3、 (1)12.5cm
(2)①12.5cm;②MN =(AB+CD)
【解析】
【分析】
(1)利用线段的中点的性质解决问题即可;
(2)①分别求出CM,CN,可得结论;
②利用x表示出MC,CN,可得结论.
(1)
解:如图1中,∵点M是线段AC的中点,点N是线段BD的中点,
∴BM=AB=5(cm),BN=CD=7.5(cm),
∴MN=BM+BN=12.5(cm),
故答案为:12.5cm;
(2)
①∵BC=7cm,AB=10cm,CD=15cm,
∴AC=17(cm),BD=22(cm),
∵点M是线段AC的中点,点N是线段BD的中点,
∴CM=AC=8.5(cm),BN=BD=11(cm),
∴CN=BN-BC=11-7=4(cm),
∴MN=MC+CN=12.5(cm);
②∵BC=x,
∴AC=AB+x,BD=x+CD,
∵点M是线段AC的中点,点N是线段BD的中点,
∴CM=AC=(AB+x),BN=BD=(x+CD),
∴MN=MC+BN-BC=(AB+x)+(x+CD)-x=(AB+CD).
【点睛】
本题考查线段的中点等知识,解题的关键是掌握线段的中点的性质,属于中考常考题型.
4、 (1)320cm
(2)120cm
(3)20秒
(4)10或30秒
【解析】
【分析】
(1)根据AB+BC=AC,已知AB=40cm,BC=280cm,代入数据,即可解得线段AC的长;
(2)根据线段的中点定理可得,而BD=AD﹣AB,即可求出线段BD的长;
(3)这属于追击问题,设点P出发t秒后追上点Q,即当追上时有,可方程 3t=t+40,即可得本题之解;
(4)设点P出发t秒,点Q的距离是20cm;分两种情况,①是当P在Q的左侧时,3t=40+t+20;②是当P在Q的右侧时,3t=40+t+20,分别解这两个方程,即可得出本题答案.
(1)
解:∵AB+BC=AC,
∴AC=320cm;
(2)
解:∵D是线段AC的中点,
∴,
∴BD=AD﹣AB=120cm;
(3)
解:设点P出发t秒后追上点Q,
依题意有:3t=t+40,
解得t=20.
答:点P出发20秒后追上点Q.
(4)
解:当P在Q的左侧时,
此时3t+20=40+t,
解得:t=10;
当P在Q的右侧时,
此时3t=40+t+20,
解得:t=30.
答:点P出发10或30秒后,与点Q的距离是20cm.
【点睛】
本题主要考查了线段的有关计算,一元一次方程的应用等知识.
5、(1)BD=1;(2)∠COB=20°
【解析】
【分析】
(1)根据AB=BC,BC=6求出AB的值,再根据线段的中点求出AD的值,然后可求BD的长;
(2)先根据角平分线的定义求出∠AOB,再根据∠BOC=∠AOC,求解即可.
【详解】
解:(1)∵AB=BC,BC=6,
∴AB=×6=4,
∴AC=AB+BC=10,
∵点D是线段AC的中点,
∴AD=AC=5,
∴BD=AD-AB=5-4=1;
(2)∵OB平分∠AOD,∠AOD=100°,
∴∠AOB=∠AOD=50°,
∵∠BOC+∠AOC=∠AOB,∠BOC=∠AOC,
∴∠AOC+∠AOC=50°,
∴∠AOC=30°,
∴∠BOC=∠AOC=20°.
【点睛】
本题考查了线段的中点,线段的和差,角的平分线,角的和差,数形结合是解答本题的关键.
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试习题: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试习题,共22页。试卷主要包含了上午10等内容,欢迎下载使用。
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试一课一练: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试一课一练,共22页。试卷主要包含了能解释,已知与满足,下列式子表示的角,如图,D,下列说法正确的是等内容,欢迎下载使用。
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀测试题: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀测试题,共23页。试卷主要包含了在数轴上,点M,下列两个生活等内容,欢迎下载使用。