2020-2021学年第五章 基本平面图形综合与测试习题
展开
这是一份2020-2021学年第五章 基本平面图形综合与测试习题,共24页。试卷主要包含了已知点C,下列各角中,为锐角的是,如图,D等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、能解释:“用两个钉子就可以把木条固定在墙上”这实际问题的数学知识是( )A.垂线段最短 B.两点确定一条直线C.两点之间线段最短 D.同角的补角相等2、如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,那么线段AC的长为( )A.10cm B.2cm C.10或2cm D.无法确定3、如图,点在直线上,平分,,,则( )A.10° B.20° C.30° D.40°4、已知点C、D在线段AB上,且AC:CD:DB=2:3:4,如果AB=18,那么线段AD的长是( )A.4 B.5 C.10 D.145、下列各角中,为锐角的是( )A.平角 B.周角 C.直角 D.周角6、如图,点N为线段AM上一点,线段.第一次操作:分别取线段AM和AN的中点,;第二次操作:分别取线段和的中点,;第三次操作:分别取线段和的中点,;……连续这样操作,则第十次操作所取两个中点形成的线段的长度为( )A. B. C. D.7、如图,D、E顺次为线段上的两点,,C为AD的中点,则下列选项正确的是( )A.若,则 B.若,则C.若,则 D.若,则8、如图,延长线段AB到点C,使,D是AC的中点,若,则BD的长为( )A.2 B.2.5 C.3 D.3.59、如图,线段,点在线段上,为的中点,且,则的长度( )A. B. C. D.10、如图,某同学从处出发,去位于处的同学家交流学习,其最近的路线是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若一个角的补角是其余角的3倍,则这个角的度数为___.2、已知,则的补角的大小为_________.3、如图,B是线段AD上一点,C是线段BD的中点,AD=10,BC=3.则线段AB的长等于________.4、钟面上4时30分,时针与分针的夹角是______度,15分钟后时针与分针的夹角是_____度.5、如图,直线AB和CD相交于点O,∠AOD=3∠AOC,则直线AB和CD的夹角是______.三、解答题(5小题,每小题10分,共计50分)1、已知直线MN上有一线段AB,AB=6,点C是线段AB的中点,点D在直线MN上,且BD=2,求线段DC的长.2、如图(1),直线、相交于点,直角三角板边落在射线上,将三角板绕点逆时针旋转180°.(1)如图(2),设,当平分时,求(用表示)(2)若,①如图(3),将三角板旋转,使落在内部,试确定与的数量关系,并说明理由.②若三角板从初始位置开始,每秒旋转5°,旋转时间为,当与互余时,求的值.3、数轴上不重合两点A,B.(1)若点A表示的数为﹣3,点B表示的数为1,点M为线段AB的中点,则点M表示的数为 ;(2)若点A表示的数为﹣3,线段AB中点N表示的数为1,则点B表示的数为 ;(3)点O为数轴原点,点D表示的数分别是﹣1,点A从﹣5出发,以每秒1个单位长度的速度向正半轴方向移动,点C从﹣3同时出发,以每秒3个单位长度的速度向正半轴方向移动,点B为线段CD上一点.设移动的时间为t(t>0)秒,①用含t的式子填空:点A表示的数为 ;点C表示的数为 ;②当点O是线段AB的中点时,直接写出t的取值范围.4、已知∠AOD=160°,OB为∠AOD内部的一条射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD,求∠MON的度数为 ;(2)如图2,∠BOC在∠AOD内部(∠AOC>∠AOB),且∠BOC=20°,OF平分∠AOC,OG平分∠BOD(射线OG在射线OC左侧),求∠FOG的度数;(3)在(2)的条件下,∠BOC绕点O运动过程中,若∠BOF=8°,求∠GOC的度数.5、点是直线上的一点,,平分.(1)如图,若,求的度数.(2)如图,若,求的度数. -参考答案-一、单选题1、B【解析】【分析】根据两点确定一条直线解答即可.【详解】解:“用两个钉子就可以把木条固定在墙上”这实际问题的数学知识是:两点确定一条直线,故选B.【点睛】本题考查了直线的性质,熟练掌握两点确定一条直线是解答本题的关键.2、C【解析】【分析】分AC=AB+BC和AC=AB-BC,两种情况求解.【详解】∵A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,当AC=AB+BC时,AC=6+4=10;当AC=AB-BC时,AC=6-4=2;∴AC的长为10或2cm故选C.【点睛】本题考查了线段的和差计算,分AB,BC同向和逆向两种情形是解题的关键.3、A【解析】【分析】设∠BOD=x,分别表示出∠COD,∠COE,根据∠EOD=50°得出方程,解之即可.【详解】解:设∠BOD=x,∵OD平分∠COB,∴∠BOD=∠COD=x,∴∠AOC=180°-2x,∵∠AOE=3∠EOC,∴∠EOC=∠AOC==,∵∠EOD=50°,∴,解得:x=10,故选A.【点睛】本题考查角平分线的意义,通过图形表示出各个角,是正确计算的前提.4、C【解析】【分析】设AC=2x,CD=3x,DB=4x,根据题意列方程即可得到结论.【详解】∵AC:CD:DB=2:3:4,∴设AC=2x,CD=3x,DB=4x,∴AB=9x,∵AB=18,∴x=2,∴AD=2x+3x=5x=10,故选:C.【点睛】本题考查了两点间的距离,线段的中点的定义,正确的理解题意是解题的关键.5、B【解析】【分析】求出各个选项的角的度数,再判断即可.【详解】解:A. 平角=90°,不符合题意;B. 周角=72°,符合题意;C. 直角=135°,不符合题意;D. 周角=180°,不符合题意;故选:B.【点睛】本题考查了角的度量,解题关键是明确周角、平角、直角的度数.6、A【解析】【分析】根据线段中点定义先求出M1N1的长度,再由M1N1的长度求出M2N2的长度,再由M2N2的长度求出M2N2的长度,从而找到规律,即可求出MnNn的结果.【详解】解:∵线段MN=20,线段AM和AN的中点M1,N1,∴M1N1=AM1-AN1∵线段AM1和AN1的中点M2,N2;∴M2N2=AM2-AN2∵线段AM2和AN2的中点M3,N3;∴M3N3=AM3-AN3.......∴∴故选:A.【点睛】本题考查了与线段中点有关的线段的和差,根据线段中点的定义得出是解题关键.7、D【解析】【分析】先利用中点的含义及线段的和差关系证明再逐一分析即可得到答案.【详解】解: C为AD的中点, ,则 故A不符合题意; ,则 同理: 故B不符合题意; ,则 同理: 故C不符合题意; ,则 同理: 故D符合题意;故选D【点睛】本题考查的是线段的和差关系,线段的中点的含义,掌握“线段的和差关系即中点的含义证明”是解本题的关键8、C【解析】【分析】由,,求出AC,根据D是AC的中点,求出AD,计算即可得到答案.【详解】解:∵,,∴BC=12,∴AC=AB+BC=18,∵D是AC的中点,∴,∴BD=AD-AB=9-6=3,故选:C.【点睛】此题考查了线段的和差计算,线段中点的定义,数据线段中点定义及掌握逻辑推理能力是解题的关键.9、D【解析】【分析】设cm,则cm,根据题意列出方程求解即可.【详解】解:设,则,∵为的中点,∴,∴,解得,cm,故选:D.【点睛】本题考查了线段的和差和线段的中点,解一元一次方程,解题关键是明确相关定义,设未知数列出方程求解.10、B【解析】【分析】根据两点之间线段最短,对四个选项中的路线作比较即可.【详解】解:四个选项均为从A→C然后去B由两点之间线段最短可知,由C到B的连线是最短的由于F在CB线上,故可知A→C→F→B是最近的路线故选B.【点睛】本题考查了两点之间线段最短的应用.解题的关键在于正确理解两点之间线段最短.二、填空题1、45°##45度【解析】【分析】根据补角和余角的定义,利用“一个角的补角是它的余角的度数的3倍”作为相等关系列方程求解即可得出结果.【详解】解:设这个角的度数是x,则180°-x=3(90°-x),解得x=45°.答:这个角的度数是45°.故答案为:45°.【点睛】本题考查了余角和补角的知识,设出未知数是解决本题的关键,要掌握解答此类问题的方法.2、【解析】【分析】根据补角的性质,即可求解.【详解】解:∵,∴的补角为:.故答案为:【点睛】本题主要考查了补角的性质,熟练掌握互为补角的两个角的和等于180°是解题的关键.3、4【解析】【分析】首先根据C是线段BD的中点,可得:CD=BC=3,然后用AD的长度减去BC、CD的长度,求出AB的长度是多少即可.【详解】解:∵C是线段BD的中点,BC=3,∴CD=BC=3;∵AB+BC+CD=AD,AD=10,∴AB=10-3-3=4.故答案为:4.【点睛】本题主要考查了两点间的距离.解题的关键是熟练掌握两点间的距离的求法,以及线段的中点的定义.4、 45° 127.5°【解析】【分析】根据时钟上一大格是30°,时针每分钟转0.5°进行计算即可.【详解】解:根据题意:钟面上4时30分,时针与分针的夹角是 ;15分钟后时针与分针的夹角是 .故答案为:45°,127.5°【点睛】本题考查了钟面角,熟练掌握时钟上一大格是30°,时针每分钟转0.5°是解题的关键.5、45°##45度【解析】【分析】∠AOD=3∠AOC,∠AOD+∠AOC=180°,计算求解∠AOC的值即为所求.【详解】解:由题意知,直线AB和CD的夹角是∠AOC或∠BOD∵∠AOD=3∠AOC,∠AOD+∠AOC=180°∴∠AOC=45°故答案为:45°.【点睛】本题考查了补角.解题的关键在于正确的找出角度之间的数量关系.三、解答题1、1或5【解析】【分析】根据题意,分两种情况:(1)点D在点B的右侧时,(2)点D在点B的左侧时,求出线段DC的长度是多少即可.【详解】解: ∵点C是AB的中点,∴.∵AB=6,当点D在点B左侧时;∵DB=2,∴当点D在点B右侧时;.【点睛】本题考查了利用中点性质转化线段之间倍分关系,从而求出线段的长短.解题的关键是在不同情况下灵活运用它的不同表示方法,同时灵活运用线段的和差倍分转化线段之间的数量关系也是十分关键的一点.2、 (1)(2)①,理由见解析;②4秒或22秒【解析】【分析】(1)利用角的和差关系求解 再利用角平分线的含义求解即可;(2)①设,再利用角的和差关系依次求解, ,, 从而可得答案;②由题意得:与重合是第18秒,与重合是第8秒,停止是36秒.再分三种情况讨论:如图,当时 ,,如图,当时 ,,如图,当时,,,再利用互余列方程解方程即可.(1)解: ∵平分 ∴(2)解:①设,则, ∴∴, ∴②由题意得:与重合是第18秒,与重合是第8秒,停止是36秒.如图,当时 ,, 则, ∴如图,当时 ,,则,方程无解,不成立如图,当时,,,则, ∴综上所述秒或22秒【点睛】本题考查的是角的和差运算,角平分线的定义,角的动态定义的理解,互为余角的含义,清晰的分类讨论是解本题的关键.3、 (1)(2)5(3)①,;②且【解析】【分析】(1)先根据两点距离公式求出AB=1-(-3)=1+3=4,根据点M为AB中点,求出AM,然后利用点A表示的数与AM长求出点M表示的数即可;(2)根据点A表示的数为﹣3,线段AB中点N表示的数为1,求出AN=1-(-3)=1+3=4,根据点N为AB中点,可求AB=2AN=2×4=8,然后利用点A表示的数与AB的长求出点B表示的数即可;(3)①用点A运动的速度×运动时间+起点表示数得出点A表示的数为,用点C运动的速度×运动时间+起点表示数得出点C表示的数为;②点A与点B关于点O,点A从-5出发,点B此时对应的数为5,当点B与点C相遇时满足条件,列方程-3+3t+t=5-(-3)得出点B在CD上t=2,当点A与点B相遇时点A在点O处,三点A、O、B重合,此时没有中点,t≠5,当点B与点D重合时,点A运动到1,列方程-5+t=1解方程即可.(1)解:∵点A表示的数为﹣3,点B表示的数为1,∴AB=1-(-3)=1+3=4,∵点M为AB中点,∴AM=BM,∴点M表示的数为:-3+2=-1,故答案为:-1;(2)解:∵点A表示的数为﹣3,线段AB中点N表示的数为1,∴AN=1-(-3)=1+3=4,∵点N为AB中点,∴AB=2AN=2×4=8,∴点B表示的数为:-3+8=5,故答案为:5;(3)①点A表示的数为, 点C表示的数为, 故答案为:;;②点A与点B关于点O对称,点A从-5出发,点B此时对应的数为5,当点B与点C相遇时满足条件,∴-3+3t+t=5-(-3),∴t=2,当点A与点B相遇时点A在点O处,三点A、O、B重合,此时没有中点,∴t≠5,当点B与点D重合时,点A运动到1,-5+t=1,∴t=6,∴当点O是线段AB的中点时, t的取值范围为2≤t≤6,且t≠5.【点睛】本题考查数轴表示数,数轴上两点距离,线段中点,动点问题,列解一元一次方程,掌握数轴表示数,数轴上两点距离,线段中点,动点问题,列解一元一次方程是解题关键.4、 (1)80°;(2)70°(3)42°或58°.【解析】【分析】(1)根据角平分线的性质证得∠BOM=∠AOB,∠BON=∠BOD,即可得到答案;(2)设∠BOF=x,根据角平分线的性质求出∠AOC=2∠COF=40°+2x,得到∠COD=∠AOD-∠AOC=140°-2x,由OG平分∠BOD,求出∠BOG=∠BOD=70°−x,即可求出∠FOG的度数;(3)分两种情况:①当OF在OB右侧时,由∠BOC=20°,∠BOF=8°,求得∠COF的度数,利用OF平分∠AOC,得到∠AOC的度数,得到∠BOD的度数,根据OG平分∠BOD,求出∠BOG的度数,即可求出答案;②当OF在OB左侧时,同理即可求出答案.(1)解:∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=∠AOB,∠BON=∠BOD,∴∠MON=∠BOM+∠BON=∠AOB+∠BOD=∠AOD=80°;故答案为:80°;(2)解:设∠BOF=x,∵∠BOC=20°,∴∠COF=20°+x,∵OF平分∠AOC,∴∠AOC=2∠COF=40°+2x,∴∠COD=∠AOD-∠AOC=140°-2x,∵OG平分∠BOD,∴∠BOG=∠BOD=70°−x,∴∠FOG=∠BOG+∠BOF=70°−x+x=70°;(3)解:当OF在OB右侧时,如图,∵∠BOC=20°,∠BOF=8°,∴∠COF=28°,∵OF平分∠AOC,∴∠AOC=2∠COF=56°,∴∠COD=∠AOD-∠AOC=104°,∴∠BOD=124°,∵OG平分∠BOD,∴∠BOG=∠BOD=62°,∴∠GOC=∠BOG−∠BOC=62°−20°=42°.当OF在OB左侧时,如图,∵∠BOC=20°,∠BOF=8°,∴∠COF=12°,∵OF平分∠AOC,∴∠AOC=2∠COF=24°,∴∠COD=∠AOD-∠AOC=136°,∴∠BOD=156°,∵OG平分∠BOD,∴∠BOG=∠BOD=78°,∴∠GOC=∠BOG−∠BOC=78°−20°=58°.∴∠GOC的度数为42°或58°.【点睛】此题考查了几何图形中角度的计算,角平分线的有关计算,正确掌握角平分线的定义及图形中各角度之间的位置关系进行计算是解题的关键.5、(1)=25°;(2)【解析】【分析】(1)结合题意,根据平角的性质,得,根据角平分线的性质,得;根据余角的性质计算,即可得到答案;(2)设,根据角平分线性质,得,结合,通过列一元一次方程并求解,得;再通过角度和差计算,即可得到答案.【详解】(1)∵是一个平角∴∴∵∴∴;(2)设,则∵平分∴∵∴∴∴∴∴.【点睛】本题考查了角、角平分线、一元一次方程的知识;解题的关键是熟练掌握角平分线、余角、角度和差运算、一元一次方程的性质.
相关试卷
这是一份初中数学第五章 基本平面图形综合与测试巩固练习,共21页。试卷主要包含了如图所示,B,如图,射线OA所表示的方向是等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试综合训练题,共23页。试卷主要包含了在数轴上,点M,已知,则∠A的补角等于,延长线段至点,分别取,已知,则的补角等于等内容,欢迎下载使用。
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试复习练习题,共28页。试卷主要包含了能解释,上午8,如图所示,由A到B有①,已知,则的补角的度数为等内容,欢迎下载使用。