初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试练习题
展开
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试练习题,共21页。试卷主要包含了在下列生活,已知,则的补角的度数为,已知,则的补角等于,如果A,如图所示,点E等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是( )A.北偏西55° B.北偏东65° C.北偏东35° D.北偏西35°2、如图,王伟同学根据图形写出了四个结论:①图中共有3条直线;②图中共有7条射线;③图中共有6条线段;④图中射线BC与射线CD是同一条射线.其中结论正确的有( )A.1个 B.2个 C.3个 D.4个3、已知,则∠A的补角等于( )A. B. C. D.4、在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是( )①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上.A.①② B.①④ C.②③ D.③④5、已知,则的补角的度数为( )A. B. C. D.6、已知,则的补角等于( )A. B. C. D.7、如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,那么线段AC的长为( )A.10cm B.2cm C.10或2cm D.无法确定8、将一副直角三角尺按如图所示的不同方式摆放,则图中∠α与∠β相等的是( )A. B.C. D.9、如图所示,点E、F分别是线段AC、AB的中点,若EF=2,则BC的长为( ) A.3 B.4 C.6 D.810、在数轴上,点M、N分别表示数m,n.则点M、N之间的距离为.已知点A,B,C,D在数轴上分别表示的数为a,b,c,d.且,则线段的长度为( )A.4.5 B.1.5 C.6.5或1.5 D.4.5或1.5第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,点C在线段上,,点D是线段的中点.若,则的长为________.2、如果∠A=55°30′,那么∠A的余角的度数等于______°.3、______°.4、90°-32°51′18″=______________.5、如图,邮局在学校( )偏( )( )°方向上,距离学校是( )米.三、解答题(5小题,每小题10分,共计50分)1、如图,已知线段a,b.(尺规作图,保留作图痕迹,不写作法)求作:线段.2、如图,已知∠AOB=120°,OC是∠AOB内的一条射线,且∠AOC:∠BOC=1:2.(1)求∠AOC,∠BOC的度数;(2)作射线OM平分∠AOC,在∠BOC内作射线ON,使得∠CON:∠BON=1:3,求∠MON的度数;(3)过点O作射线OD,若2∠AOD=3∠BOD,求∠COD的度数.3、如图,∠AOB是平角,,,OM、ON外别是∠AOC、∠BOD的平分线,求∠MON的度数.4、如图甲,已知线段,,线段CD在线段AB上运动,E,F分别是AC,BD的中点.(1)若,则______;(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变,请求出EF的长度,如果变化,请说明理由;(3)①对于角,也有和线段类似的规律.如图乙,已知在内部转动,OE,OF分别平分和,若,,求;②请你猜想,和会有怎样的数量关系,直接写出你的结论.5、如图,线段AB的长为12,C是线段AB上的一点,AC=4,M是AB的中点,N是AC的中点,求线段MN的长. -参考答案-一、单选题1、D【解析】【分析】如图,根据两船同时出发,同速行驶,假设相撞时得到AC=BC,求出∠CBA=∠CAB=90°-35°=55°,即可得到答案.【详解】解:假设两船相撞,如同所示,根据两船的速度相同可得AC=BC,∴∠CBA=∠CAB=90°-35°=55°,∴乙的航向不能是北偏西35°,故选:D.【点睛】此题考查了方位角的表示方法,角度的运算,正确理解题意是解题的关键.2、A【解析】【分析】根据直线、线段、射线的区别逐项分析判断即可【详解】解:①图中只有直线BD,1条直线,原说法错误;②图中共有2×3+1×2=8条射线,原说法错误;③图中共有6条线段,即线段,原说法是正确的;④图中射线BC与射线CD不是同一条射线,原说法错误.故正确的有③,共计1个故选:A.【点睛】本题考查了直线、线段、射线的区别与联系,理解三者的区别是解题的关键.3、C【解析】【分析】若两个角的和为 则这两个角互为补角,根据互补的含义直接计算即可.【详解】解: , ∠A的补角为: 故选C【点睛】本题考查的是互补的含义,掌握“利用互补的含义,求解一个角的补角”是解本题的关键.4、B【解析】【分析】直接利用直线的性质以及线段的性质分析求解即可.【详解】①用两颗钉子就可以把木条固定在墙上,可以用基本事实“两点确定一条直线”来解释;②把笔尖看成一个点,当这个点运动时便得到一条线,可以用基本事实“无数个点组成线”来解释;③把弯曲的公路改直,就能缩短路程,可以用基本事实“两点之间线段最短”来解释;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上,可以用基本事实“两点确定一条直线”来解释;综上可得:①④可以用“两点确定一条直线”来解释,故选:B.【点睛】此题主要考查了直线的性质以及线段的性质,正确把握相关性质是解题关键.5、C【解析】【分析】两个角的和为 则这两个角互补,利用补角的含义直接列式计算即可.【详解】解: , 的补角 故选C【点睛】本题考查的是互为补角的含义,掌握“两个角的和为 则这两个角互补”是解本题的关键.6、C【解析】【分析】补角的定义:如果两个角的和是一个平角,那么这两个角互为补角,据此求解即可.【详解】解:∵,∴的补角等于,故选:C.【点睛】本题考查补角,熟知互为补角的两个角之和是180°是解答的关键.7、C【解析】【分析】分AC=AB+BC和AC=AB-BC,两种情况求解.【详解】∵A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,当AC=AB+BC时,AC=6+4=10;当AC=AB-BC时,AC=6-4=2;∴AC的长为10或2cm故选C.【点睛】本题考查了线段的和差计算,分AB,BC同向和逆向两种情形是解题的关键.8、C【解析】【分析】A、由图形可得两角互余,不合题意;B、由图形得出两角的关系,即可做出判断;C、根据图形可得出两角都为45°的邻补角,可得出两角相等;D、由图形得出两角的关系,即可做出判断.【详解】解:A、由图形得:α+β=90°,不合题意;B、由图形得:β+γ=90°,α+γ=60°,可得β﹣α=30°,不合题意;C、由图形可得:α=β=180°﹣45°=135°,符合题意;D、由图形得:α+45°=90°,β+30°=90°,可得α=45°,β=60°,不合题意.故选:C.【点睛】本题考查了等角的余角相等,三角尺中角度的计算,掌握三角尺中各角的度数是解题的关键.9、B【解析】【分析】根据线段的中点,可得AE与AC的关系,AF与AB的关系,根据线段的和差,可得答案.【详解】解:E、F分别是线段AC、AB的中点,AC=2AE=2CE,AB=2AF=2BF,EF=AE﹣AF=22AE﹣2AF=AC﹣AB=2EF=4,BC=AC﹣AB=4,故选:B.【点睛】本题考查了两点间的距离,根据中点的性质求出线段AC-AB=4是解题关键.10、C【解析】【分析】根据题意可知与的距离相等,分在的左侧和右侧两种情况讨论即可【详解】解:①如图,当在点的右侧时,,②如图,当在点的左侧时, ,综上所述,线段的长度为6.5或1.5故选C【点睛】本题考查了数轴上两点的距离,数形结合分类讨论是解题的关键.二、填空题1、【解析】【分析】先求解 再利用线段的和差关系求解 再利用线段的中点的含义求解即可.【详解】解: 点D是线段的中点, 故答案为:【点睛】本题考查的是线段的和差关系,线段的中点的含义,掌握“线段的和差关系”是解本题的关键.2、34.5【解析】【分析】根据余角定义解答.【详解】解:∵∠A=55°30′,∴∠A的余角的度数为=34.5°,故答案为:34.5.【点睛】此题考查了余角的定义:相加为90°的两个角互为余角,熟记余角定义是解题的关键.3、42.6【解析】【分析】根据角度进制的转化求解即可,.【详解】解:42.6故答案为:42.6【点睛】本题考查了角度进制的转化,掌握角度进制是解题的关键.4、【解析】【分析】根据度分秒的减法,相同单位相减,不够减时向上一单位借1当60 再减,可得答案.【详解】解:90°-32°51′18″=89°60′-32°51′18″=89°59′60″-32°51′18″′=57°8′42″.故答案为:57°8′42″.【点睛】本题考察了度分秒的换算,度分秒的减法,相同单位相减,不够减时向上一单位借1当60 再减.1°=60′,1′=60″.5、 北 东 45 1000【解析】【分析】图上距离1厘米表示实际距离200米,于是即可求出它们之间的实际距离,再根据它们之间的方向关系,即可进行解答.【详解】解:邮局在学校北偏东45°的方向上,距离学校 1000米.故答案为:北,东,45,1000.【点睛】此题主要考查了方位角,以及线段比例尺的意义的理解和灵活应用.三、解答题1、见解析【解析】【分析】作射线AM,在射线AM,上顺次截取AC=a,CD=a,再反向截取DB=b,进而可得线段AB.【详解】解:如图,线段AB即为所求作的线段.【点睛】本题考查尺规作图—线段的和差,是基础考点,掌握相关知识是解题关键.2、 (1)∠AOC=40°,∠BOC=80°(2)40°(3)∠COD的度数为32°或176°【解析】【分析】(1)根据∠AOC:∠BOC=1:2,即可求解;(2)先求出∠COM,再求出∠CON,相加即可求解;(3)分OD在∠AOB内部和外部两种情况分类讨论即可求解.【小题1】解:∵∠AOC:∠BOC=1:2,∠AOB=120°,∴∠AOC=∠AOB=×120°=40°,∠BOC=∠AOB=×120°=80°;【小题2】∵OM平分∠AOC,∴∠COM=∠AOC=×40°=20°,∵∠CON:∠BON=1:3,∴∠CON=∠BOC=×80°=20°,∴∠MON=∠COM+∠CON=20°+20°=40°;【小题3】如图,当OD在∠AOB内部时,设∠BOD=x°,∵2∠AOD=3∠BOD,∴∠AOD=,∵∠AOB=120°,∴x+=120,解得:x=48,∴∠BOD=48°,∴∠COD=∠BOC-∠BOD=80°-48°=32°,如图,当OD在∠AOB外部时,设∠BOD=y°,∵2∠AOD=3∠BOD,∴∠AOD=,∵∠AOB=120°,∴+y+120°=360°解得:y=96°,∴∠COD=∠BOD+∠BOC=96°+80°=176°,综上所述,∠COD的度数为32°或176°.【点睛】本题考查了角的计算及角平分线,掌握角的特点及比例的意义是解决问题的关键.3、【解析】【分析】根据角平分线的定义求出,再用平角减去即可得到结果.【详解】解:∵∠AOB是平角,∴ ∵OM、ON外别是∠AOC、∠BOD的平分线,且∠AOC=80°,∠BOD=30°,∴,,∴∠MON=∠AOB-∠AOM-∠BON=180°-40°-15°=125°.【点睛】本题主要考查了角的平分线的有关计算,性质、角的和差等知识点.解决本题亦可利用:∠MON=∠COD+∠COM+∠DON.4、 (1)12(2)不变;(3)①90°;②【解析】【分析】(1)根据线段中点推理表示EF的长度即可;(2)根据,再根据中点进行推导即可;(3)①根据再结合角平分线进行计算;②由①可以得到结论.(1)∵E,F分别是AC,BD的中点,∴EC=AC,DF=DB.∴EC+DF=AC+DB= (AC+DB).又∵AB=20cm,CD=4cm,∴AC+DB=AB-CD=20-4=16(cm).∴EC+DF= (AC+DB)=8(cm).∴EF=EC+DF+CD=8+4=12(cm).故答案为:12.(2)EF的长度不变.(3)①∵OE,OF分别平分和∴∠EOC=∠AOC,∠DOF=∠DOB.∴∵∴②,理由如下:∵OE,OF分别平分和∴∠EOC=∠AOC,∠DOF=∠DOB.∴∵∴【点睛】本题主要考查线段中点以及角平分线的定义,熟练掌握线段中点以及角平分线的定义是解决本题的关键.5、【解析】【分析】根据求解即可.【详解】解:由题意知:,∴∴线段MN的长为4.【点睛】本题考查了线段的中点有关的计算.解题的关键在于正确的表示线段之间的数量关系.
相关试卷
这是一份数学六年级下册第五章 基本平面图形综合与测试复习练习题,共23页。试卷主要包含了图中共有线段,下列命题中,正确的有等内容,欢迎下载使用。
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步训练题,共22页。试卷主要包含了在一幅七巧板中,有我们学过的,下列命题中,正确的有等内容,欢迎下载使用。
这是一份初中数学第五章 基本平面图形综合与测试同步达标检测题,共21页。试卷主要包含了下列说法中正确的是,已知,则∠A的补角等于,上午10等内容,欢迎下载使用。