2021学年第五章 基本平面图形综合与测试课时练习
展开
这是一份2021学年第五章 基本平面图形综合与测试课时练习,共21页。试卷主要包含了已知与满足,下列式子表示的角,在数轴上,点M,若的补角是,则的余角是,如图,点在直线上,平分,,,则等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的是( )A.锐角的补角不一定是钝角 B.一个角的补角一定大于这个角C.直角和它的的补角相等 D.锐角和钝角互补2、如图,某同学从处出发,去位于处的同学家交流学习,其最近的路线是( )A. B.C. D.3、平面上有三个点A,B,C,如果,,,则( )A.点C在线段AB的延长线上 B.点C在线段AB上C.点C在直线AB外 D.不能确定4、已知与满足,下列式子表示的角:①;②;③;④中,其中是的余角的是( )A.①② B.①③ C.②④ D.③④5、已知与互为余角,若,则的补角的大小为( )A. B. C. D.6、在数轴上,点M、N分别表示数m,n.则点M、N之间的距离为.已知点A,B,C,D在数轴上分别表示的数为a,b,c,d.且,则线段的长度为( )A.4.5 B.1.5 C.6.5或1.5 D.4.5或1.57、若的补角是,则的余角是( )A. B. C. D.8、如图,O是直线AB上一点,则图中互为补角的角共有( )A.1对 B.2对 C.3对 D.4对9、如图,点在直线上,平分,,,则( )A.10° B.20° C.30° D.40°10、如图,∠AOB,以OA为边作∠AOC,使∠BOC=∠AOB,则下列结论成立的是( )A. B.C.或 D.或第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个圆的周长是31.4cm,它的半径是_____cm,面积是_____cm2.2、如图,在一条笔直的马路(直线l)两侧各有一个居民区(点M,N),如果要在这条马路旁建一个购物中心,使购物中心到这两个小区的距离之和最小,那么购物中心应建在线段MN与直线l的交点P处,这样做的依据是_______.3、如图,点C是线段上任意一点(不与端点重合),点M是中点,点P是中点,点Q是中点,则下列说法:①;②;③;④.其中正确的是_______.4、如图,邮局在学校( )偏( )( )°方向上,距离学校是( )米.5、______°.三、解答题(5小题,每小题10分,共计50分)1、如图,已知平分平分.(1)求的度数.(2)求的度数.2、如图,平面上有四个点A,B,C,D.(1)依照下列语句画图:①直线AB,CD相交于点E;②在线段BC的延长线上取一点F,使CF=DC.(2)在四边形ABCD内找一点O,使它到四边形四个顶点的距离的和OA+OB+OC+OD最小,并说出你的理由.3、如图,点C为线段AD上一点,点B为CD的中点,且AC=6cm,BD=2cm.(1)求线段AD的长;(2)若点E在直线AD上,且EA=3cm,求线段BE的长.4、如图,,是的平分线,是的平分线.(1)若,求的度数;(2)若与互补,求的度数.5、如图,点为直线上一点,过点作射线,使.将一直角三角板的直角顶点放在点处,一边在射线上,另一边在直线的下方.(1)将图1中的三角板绕点逆时针旋转至图2,使一边在的内部,且恰好平分.求的度数.(2)将图1中的三角板绕点以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第秒时,直线恰好平分锐角,则的值为多少?(直接写结果,不写步骤) -参考答案-一、单选题1、C【解析】【分析】根据余角和补角的概念判断即可.【详解】解:A、因为锐角的补角与锐角之和为180°,所以锐角的补角一定是钝角,所以本说法不符合题意;B、当这个角为120°时,120°的补角是60°,所以本说法不符合题意;C、根据直角的补角是直角.所以本说法符合题意;D、锐角和钝角的度数不确定,不能确定锐角和钝角是否互补,所以本说法不符合题意;故选:C.【点睛】本题考查的是余角和补角的概,如果两个角的和等于90°,就说这两个角互为余角;如果两个角的和等于180°,就说这两个角互为补角.2、B【解析】【分析】根据两点之间线段最短,对四个选项中的路线作比较即可.【详解】解:四个选项均为从A→C然后去B由两点之间线段最短可知,由C到B的连线是最短的由于F在CB线上,故可知A→C→F→B是最近的路线故选B.【点睛】本题考查了两点之间线段最短的应用.解题的关键在于正确理解两点之间线段最短.3、B【解析】【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系,再根据正确画出的图形解题.【详解】解:如图:∵AB=8,AC=5,BC=3,从图中我们可以发现AC+BC=AB,所以点C在线段AB上.故选:B.【点睛】本题考查了直线、射线、线段,在此类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.4、B【解析】【分析】将每项加上判断结果是否等于90°即可.【详解】解:①∵+=90°,故该项是的余角;②∵,∴,∴+=90°+,故该项不是的余角;③∵,∴+=90°,故该项是的余角;④∵,∴+=120°,故该项不是的余角;故选:B.【点睛】此题考查了余角的有关计算,熟记余角定义,正确掌握角度的计算是解题的关键.5、B【解析】【分析】根据求得,根据求得的补角【详解】解:∵与互为余角,若,∴故选B【点睛】本题考查了求一个角的余角、补角,解题的关键是理解互为余角的两角之和为,互为补角的两角之和为.6、C【解析】【分析】根据题意可知与的距离相等,分在的左侧和右侧两种情况讨论即可【详解】解:①如图,当在点的右侧时,,②如图,当在点的左侧时, ,综上所述,线段的长度为6.5或1.5故选C【点睛】本题考查了数轴上两点的距离,数形结合分类讨论是解题的关键.7、B【解析】【分析】直接利用一个角的余角和补角差值为90°,进而得出答案.【详解】解:∵∠α的补角等于130°,∴∠α的余角等于:130°-90°=40°.故选:B.【点睛】本题主要考查了余角和补角,正确得出余角和补角的关系是解题关键.8、B【解析】【分析】根据补角定义解答.【详解】解:互为补角的角有:∠AOC与∠BOC,∠AOD与∠BOD,共2对,故选:B.【点睛】此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.9、A【解析】【分析】设∠BOD=x,分别表示出∠COD,∠COE,根据∠EOD=50°得出方程,解之即可.【详解】解:设∠BOD=x,∵OD平分∠COB,∴∠BOD=∠COD=x,∴∠AOC=180°-2x,∵∠AOE=3∠EOC,∴∠EOC=∠AOC==,∵∠EOD=50°,∴,解得:x=10,故选A.【点睛】本题考查角平分线的意义,通过图形表示出各个角,是正确计算的前提.10、D【解析】【分析】分OC在∠AOB内部和OC在∠AOB外部两种情况讨论,画出图形即可得出结论.【详解】解:当OC在∠AOB内部时,∵∠BOC=∠AOB,即∠AOB=2∠BOC,∴∠AOC=∠BOC;当OC在∠AOB外部时,∵∠BOC=∠AOB,即∠AOB=2∠BOC,∴∠AOC=3∠BOC;综上,∠AOC=∠BOC或∠AOC=3∠BOC;故选:D.【点睛】本题考查了角平分线的定义,熟练掌握角平分线的定义,数形结合解题是关键.二、填空题1、 5 78.5【解析】【分析】设圆的半径为.先利用圆的周长公式求出,再利用圆的面积公式即可得.【详解】解:设圆的半径为,由题意得:,解得,则圆的面积为,故答案为:5,78.5.【点睛】本题考查了圆的周长、面积等知识,解题的关键是记住圆的周长公式和面积公式.2、两点之间,线段最短【解析】【分析】根据两点之间线段最短即可求出答案.【详解】解:依据是两点之间,线段最短,故答案为:两点之间,线段最短.【点睛】本题考查作图问题,解题的关键是正确理解两点之间线段最短,本题属于基础题型.3、①②④【解析】【分析】根据线段中点的定义得到,,,然后根据线段之间的和差倍分关系逐个求解即可.【详解】解:∵M是中点,∴,∵P是中点,∴,∵点Q是中点,∴,对于①:,故①正确;对于②:,,故②正确;对于③:,而,故③错误;对于④:,,故④正确;故答案为:①②④.【点睛】此题考查线段之间的和差倍分问题,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性,同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.4、 北 东 45 1000【解析】【分析】图上距离1厘米表示实际距离200米,于是即可求出它们之间的实际距离,再根据它们之间的方向关系,即可进行解答.【详解】解:邮局在学校北偏东45°的方向上,距离学校 1000米.故答案为:北,东,45,1000.【点睛】此题主要考查了方位角,以及线段比例尺的意义的理解和灵活应用.5、42.6【解析】【分析】根据角度进制的转化求解即可,.【详解】解:42.6故答案为:42.6【点睛】本题考查了角度进制的转化,掌握角度进制是解题的关键.三、解答题1、 (1)60°(2)10°【解析】【分析】(1)根据角平分线的定义得∠AOC =2∠AOB,即可求解;(2)先求出∠COE的度数,再求出∠DOE的度数,最后根据∠COD=∠COE-∠DOE计算即可.(1)∠AOB =,OB平分∠AOC ∠AOC =2∠AOB=2=(2)∠AOE=,∠AOC =∠COE=∠AOE-∠AOC=-=又OD平分∠AOE∠DOE=∠AOE==70°∠COD=∠COE-∠DOE=-=【点睛】本题主要考查角平分线的定义,掌握角平分线把已知角分成两个相等的角是解题的关键.2、 (1)①作图见详解;②作图见详解(2)作图见详解;理由见详解【解析】(1)① 解:如图所示E即为所求做点,② 如图所示,F点即为所求做点,(2)解:如图连接线段AC,线段BD,两线段交于点O,此时OA+OB+OC+OD最小,理由如下:要求OA+OB+OC+OD,就是求(OA +OC)+(OB +OD)最小,也就是求OA +OC最小,OB +OD最小,当O,A,C,三点在同一直线上时OA +OC最小,当O,B,D,三点在同一直线上时OB +OD最小,故直接连接线段AC,线段BD所交得点为所求作的点.【点睛】本题考查尺规作图,以及直线,线段,射线的定义等知识,能够理解直线,射线,线段的定义是关键.3、 (1)(2)BE=5或11【解析】【分析】(1)根据线段中点的定义和线段的和差即可得到结论;(2)分当点E在点A的左侧时和当点E在点A的右侧时两种情况,根据线段中点的定义和线段的和差即可得到结论.(1)解:因为点B为CD的中点,BD=2cm,所以CD=2BD=4cm,又因为AC=6cm,所以AD=AC+CD=10cm;(2)解:当点E在点A的左侧时,如图所示:则BE=EA+CA+BC,因为点B为CD的中点,所以BC=BD=2cm,因为EA=3cm,CA=6cm,所以BE=2+3+6=11(cm).当点E在点A的右侧时,如图所示:∵AC=6cm,EA=3cm,∴BE=AB﹣AE=AC+BC﹣AE=6+2﹣3=5(cm).综上,BE=5cm或11cm.【点睛】本题考查了两点间的距离,线段中点的定义,分类讨论是解题的关键.4、 (1)50°(2)60°5、 (1)(2)直线恰好平分锐角,则的值为s或s.【解析】【分析】(1)先利用角平分线的定义求解再利用 从而可得答案;(2)分两种情况讨论:如图,当直线恰好平分锐角,记为上的点,求解线段旋转的角度如图,当平分时,求解旋转的角度为: 从而可得答案.(1)解:平分 (2)解:如图,当直线恰好平分锐角,记为上的点, ,如图,当平分时, 此时转的角度为: 综上:直线恰好平分锐角,则的值为s或s.【点睛】本题考查的是角平分线的定义,角的和差运算,角的动态定义的理解,清晰的分类讨论是解本题的关键.
相关试卷
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试测试题,共21页。试卷主要包含了在下列生活,在9等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步训练题,共26页。试卷主要包含了下列各角中,为锐角的是,能解释,下列两个生活等内容,欢迎下载使用。
这是一份六年级下册第五章 基本平面图形综合与测试达标测试,共25页。试卷主要包含了如图,点在直线上,平分,,,则,图中共有线段,在9等内容,欢迎下载使用。