鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时训练
展开
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时训练,共23页。试卷主要包含了下列说法错误的是,下列说法中正确的是,下列现象,图中共有线段等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,王伟同学根据图形写出了四个结论:①图中共有3条直线;②图中共有7条射线;③图中共有6条线段;④图中射线BC与射线CD是同一条射线.其中结论正确的有( )A.1个 B.2个 C.3个 D.4个2、如图,将一块三角板60°角的顶点与另一块三角板的直角顶点重合,,的大小是( )A. B. C. D.3、如图,OM平分,,,则( )A.96° B.108° C.120° D.144°4、将三角尺与直尺按如图所示摆放,下列关于∠α与∠β之间的关系一定正确的是( )A.∠α=∠β B.∠α=∠β C.∠α+∠β=90° D.∠α+∠β=180°5、下列说法错误的是( )A.两点之间,线段最短B.经过两点有一条直线,并且只有一条直线C.延长线段AB和延长线段BA的含义是相同的D.射线AB和射线BA不是同一条射线6、如图,小红同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A.两点之间,线段最短 B.两点确定一条直线C.过一点,有无数条直线 D.连接两点之间的线段叫做两点间的距离7、下列说法中正确的是( )A.两点之间直线最短 B.单项式πx2y的系数是C.倒数等于本身的数为±1 D.射线是直线的一半8、下列现象:①用两个钉子就可以把木条固定在墙上②从A地到B地架设电线,总是尽可能沿着线段AB架设③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线④把弯曲的公路改直,就能缩短路程其中能用“两点之间线段最短”来解释的现象有( )A.①④ B.①③ C.②④ D.③④9、图中共有线段( )A.3条 B.4条 C.5条 D.6条10、已知与满足,下列式子表示的角:①;②;③;④中,其中是的余角的是( )A.①② B.①③ C.②④ D.③④第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知的补角是,则的余角度数是______°.(结果用度表示)2、45°30'=_____°.3、如图,点C在线段AB上,点D是线段AB的中点,AB=10cm,AC=7cm,则CD=______cm.4、如图,延长线段AB到C,使BC=AB,D为线段AC的中点,若DC=3,则AB=______.5、北京时间21点30分,此时钟表的时针和分针构成的角度是____________.三、解答题(5小题,每小题10分,共计50分)1、已知:如图,直线AB、CD相交于点O,∠EOC=90°,OF平分∠AOE.(1)若∠BOC=40°,求∠AOF的大小.(2)若∠COF=x°,求∠BOC的大小.2、如图,在同一直线上,有A、B、C、D四点.已知DB=AD,AC=CD,CD=4cm,求线段AB的长.3、如图,已知∠AOB=120°,OC是∠AOB内的一条射线,且∠AOC:∠BOC=1:2.(1)求∠AOC,∠BOC的度数;(2)作射线OM平分∠AOC,在∠BOC内作射线ON,使得∠CON:∠BON=1:3,求∠MON的度数;(3)过点O作射线OD,若2∠AOD=3∠BOD,求∠COD的度数.4、已知,OB为内部的一条射线.(1)如图1,若OM平分,ON平分,求的度数;(2)如图2,在内部,且,OF平分,OG平分(射线OG在射线OC左侧),求的度数;(3)在(2)的条件下,绕点O运动过程中,若,则的度数.5、如图,点C为线段AD上一点,点B为CD的中点,且AC=6cm,BD=2cm.(1)求线段AD的长;(2)若点E在直线AD上,且EA=3cm,求线段BE的长. -参考答案-一、单选题1、A【解析】【分析】根据直线、线段、射线的区别逐项分析判断即可【详解】解:①图中只有直线BD,1条直线,原说法错误;②图中共有2×3+1×2=8条射线,原说法错误;③图中共有6条线段,即线段,原说法是正确的;④图中射线BC与射线CD不是同一条射线,原说法错误.故正确的有③,共计1个故选:A.【点睛】本题考查了直线、线段、射线的区别与联系,理解三者的区别是解题的关键.2、B【解析】【分析】根据∠BAC=60°,∠1=27°20′,求出∠EAC的度数,再根据∠2=90°-∠EAC,即可求出∠2的度数.【详解】解:∵∠BAC=60°,∠1=27°20′,∴∠EAC=32°40′,∵∠EAD=90°,∴∠2=90°-∠EAC=90°-32°40′=57°20′;故选:B.【点睛】本题主要考查了与三角板有关的角度计算,解题的关键是能够正确求出∠EAC的度数.3、B【解析】【分析】设,利用关系式,,以及图中角的和差关系,得到、,再利用OM平分,列方程得到,即可求出的值.【详解】解:设,∵,∴,∴.∵,∴,∴.∵OM平分,∴,∴,解得..故选:B.【点睛】本题通过图形中的角的和差关系,利用方程的思想求解角的度数.其中涉及角的平分线的理解:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.4、C【解析】【分析】如果两个角的和等于90°(直角),就说这两个角互为余角,由题意可知∠α与∠β互余,即∠α+∠β=90°.【详解】解:∠α+∠β=180°﹣90°=90°,故选:C.【点睛】本题主要考查了余角,如果两个角的和等于90°(直角),就说这两个角互为余角.5、C【解析】【分析】根据两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义依次分析判断.【详解】解:A. 两点之间,线段最短,故该项不符合题意;B. 经过两点有一条直线,并且只有一条直线,故该项不符合题意;C. 延长线段AB和延长线段BA的含义是不同的,故该项符合题意;D. 射线AB和射线BA不是同一条射线,故该项不符合题意;故选:C.【点睛】此题考查了两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义,综合掌握各知识点是解题的关键.6、A【解析】【分析】根据两点之间线段最短的性质解答.【详解】解:∵用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选:A.【点睛】此题考查了实际生活中两点之间线段最短的应用,正确理解图形的特点与线段的性质结合是解题的关键.7、C【解析】【分析】分别对每个选项进行判断:两点之间线段最短;单项式单项式πx2y的系数是;倒数等于本身的数为±1;射线是是直线的一部分.【详解】解:A.两点之间线段最短,故不符合题意;B.单项式πx2y的系数是,不符合题意;C.倒数等于本身的数为±1,故符合题意;D.射线是是直线的一部分,故不符合题意;故选:C.【点睛】本题考查直线、射线、线段的定义和性质,熟练掌握直线、射线、线段的性质和之间的区别联系,会求单项式的系数是解题的关键.8、C【解析】【分析】直接利用直线的性质和线段的性质分别判断得出答案.【详解】解:①用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;②从A地到B地架设电线,总是尽可能沿着线段AB架设,能用“两点之间,线段最短”来解释,故此选项符合题意;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;④把弯曲的公路改直,就能缩短路程,能用“两点之间,线段最短”来解释,故此选项符合题意.故选:C.【点睛】本题考查了直线的性质和线段的性质,正确掌握相关性质是解题关键.9、D【解析】【分析】分别以为端点数线段,从而可得答案.【详解】解:图中线段有: 共6条,故选D【点睛】本题考查的是线段的含义以及数线段的数量,掌握“数线段的方法,做到不重复不遗漏”是解本题的关键.10、B【解析】【分析】将每项加上判断结果是否等于90°即可.【详解】解:①∵+=90°,故该项是的余角;②∵,∴,∴+=90°+,故该项不是的余角;③∵,∴+=90°,故该项是的余角;④∵,∴+=120°,故该项不是的余角;故选:B.【点睛】此题考查了余角的有关计算,熟记余角定义,正确掌握角度的计算是解题的关键.二、填空题1、【解析】【分析】根据180°-求得,根据即可求得答案【详解】解:∵的补角是,∴的余角为故答案为:【点睛】本题考查了求一个角的补角和余角,角度进制转换,正确的计算是解题的关键.2、45.5【解析】【分析】先将化为度数,然后与整数部分的度数相加即可得.【详解】解:.故答案为:.【点睛】题目主要考查角度的变换,熟练掌握角度之间的变换进率是解题关键.3、2【解析】【分析】根据点D是线段AB的中点,可得 ,即可求解.【详解】解:∵点D是线段AB的中点,AB=10cm,∴ ,∵AC=7cm,∴ .故答案为:2【点睛】本题主要考查了中点的定义,线段的和与差,熟练掌握把一条线段分成相等的两段的点,叫做线段的中点是解题的关键.4、4【解析】【分析】根据线段中点的性质,可得AC的长,再根据题目已知条件找到BC和AC之间的关系,用AC减去BC就得AB的长度【详解】解:由D为AC的中点,得AC=2DC=2×3=6又∵BC=AB,AC=AB+BC.∴ BC=AC=×6=2由线段的和差关系,得AB=AC-BC=6-2=4故答案为:4.【点睛】本题先根据线段中点的定义求出有关线段的长,再根据线段之间倍数关系,列出求解所求线段的式子即可.5、105【解析】【分析】根据题意,得3、9点所在直线和6、12点所在直线垂直,通过角度的乘除和和差运算,即可得到答案.【详解】如图∵3、9点所在直线和6、12点所在直线垂直∴北京时间21点30分时,分针和x的夹角为: ∴此时钟表的时针和分针构成的角度是: 故答案为:105.【点睛】本题考查了角的知识;解题的关键是熟练掌握角度的乘除和和差计算,即可得到答案.三、解答题1、(1);(2)【解析】【分析】(1)结合题意,根据平角和角度和差的性质计算得,再根据角平分线的性质计算,即可得到答案;(2)根据角度和差性质,计算得;根据角平分线的性质计算,即可得到答案.【详解】(1)∵∠EOC=90°,∠BOC=40°∴ ∵OF平分∠AOE∴ ;(2)∵∠COF=x°,∠EOC=90°∴ ∵OF平分∠AOE∴ ∴.【点睛】本题考查了角的知识;解题的关键是熟练掌握角平分线、角度和差的性质,从而完成求解.2、【解析】【分析】根据,求出、的长度,再根据即可求解.【详解】解:,,,,,.【点睛】本题考查两点间的距离,解题的关键是根据条件先利用线段之间的关系得出线段、.3、 (1)∠AOC=40°,∠BOC=80°(2)40°(3)∠COD的度数为32°或176°【解析】【分析】(1)根据∠AOC:∠BOC=1:2,即可求解;(2)先求出∠COM,再求出∠CON,相加即可求解;(3)分OD在∠AOB内部和外部两种情况分类讨论即可求解.【小题1】解:∵∠AOC:∠BOC=1:2,∠AOB=120°,∴∠AOC=∠AOB=×120°=40°,∠BOC=∠AOB=×120°=80°;【小题2】∵OM平分∠AOC,∴∠COM=∠AOC=×40°=20°,∵∠CON:∠BON=1:3,∴∠CON=∠BOC=×80°=20°,∴∠MON=∠COM+∠CON=20°+20°=40°;【小题3】如图,当OD在∠AOB内部时,设∠BOD=x°,∵2∠AOD=3∠BOD,∴∠AOD=,∵∠AOB=120°,∴x+=120,解得:x=48,∴∠BOD=48°,∴∠COD=∠BOC-∠BOD=80°-48°=32°,如图,当OD在∠AOB外部时,设∠BOD=y°,∵2∠AOD=3∠BOD,∴∠AOD=,∵∠AOB=120°,∴+y+120°=360°解得:y=96°,∴∠COD=∠BOD+∠BOC=96°+80°=176°,综上所述,∠COD的度数为32°或176°.【点睛】本题考查了角的计算及角平分线,掌握角的特点及比例的意义是解决问题的关键.4、 (1)80°;(2)70°(3)42°或【解析】【分析】(1)根据角平分线的性质证得,即可得到答案;(2)设∠BOF=x,根据角平分线的性质求出∠AOC=2∠COF=40°+2x,得到∠COD=∠AOD-∠AOC=140°-2x,由OG平分,求出,即可求出的度数;(3)分两种情况:①当OF在OB右侧时,由,,求得∠COF的度数,利用OF平分,得到∠AOC的度数,得到∠BOD的度数,根据OG平分,求出∠BOG的度数,即可求出答案;②当OF在OB左侧时,同理即可求出答案.(1)解:∵OM平分,ON平分,∴,∴=;(2)解:设∠BOF=x,∵,∴∠COF=20°+x,∵OF平分,∴∠AOC=2∠COF=40°+2x,∴∠COD=∠AOD-∠AOC=140°-2x,∵OG平分,∴,∴=;(3)解:当OF在OB右侧时,如图,∵,,∴∠COF=28°,∵OF平分,∴∠AOC=2∠COF=56°,∴∠COD=∠AOD-∠AOC=104°,∴∠BOD=124°,∵OG平分,∴, ∴=. 当OF在OB左侧时,如图,∵,,∴∠COF=12°,∵OF平分,∴∠AOC=2∠COF=24°,∴∠COD=∠AOD-∠AOC=136°,∴∠BOD=156°,∵OG平分,∴,∴=.∴的度数为42°或.【点睛】此题考查了几何图形中角度的计算,角平分线的性质,正确掌握角平分线的性质及图形中各角度之间的位置关系进行计算是解题的关键.5、 (1)(2)BE=5或11【解析】【分析】(1)根据线段中点的定义和线段的和差即可得到结论;(2)分当点E在点A的左侧时和当点E在点A的右侧时两种情况,根据线段中点的定义和线段的和差即可得到结论.(1)解:因为点B为CD的中点,BD=2cm,所以CD=2BD=4cm,又因为AC=6cm,所以AD=AC+CD=10cm;(2)解:当点E在点A的左侧时,如图所示:则BE=EA+CA+BC,因为点B为CD的中点,所以BC=BD=2cm,因为EA=3cm,CA=6cm,所以BE=2+3+6=11(cm).当点E在点A的右侧时,如图所示:∵AC=6cm,EA=3cm,∴BE=AB﹣AE=AC+BC﹣AE=6+2﹣3=5(cm).综上,BE=5cm或11cm.【点睛】本题考查了两点间的距离,线段中点的定义,分类讨论是解题的关键.
相关试卷
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂检测题,共21页。试卷主要包含了已知,则的补角等于,下列说法中正确的是等内容,欢迎下载使用。
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂检测题,共20页。试卷主要包含了已知,则的补角的度数为,能解释等内容,欢迎下载使用。
这是一份数学六年级下册第五章 基本平面图形综合与测试达标测试,共20页。试卷主要包含了在一幅七巧板中,有我们学过的等内容,欢迎下载使用。