初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试单元测试巩固练习
展开
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试单元测试巩固练习,共23页。试卷主要包含了已知线段AB,如果A等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、芳芳放学从校门向东走400米,再往北走200米到家;丽丽出校门向东走200米到家,则丽丽家在芳芳家的( )A.东南方向 B.西南方向 C.东北方向 D.西北方向2、如图,点在直线上,平分,,,则( )A.10° B.20° C.30° D.40°3、如图,线段,延长到点,使,若点是线段的中点,则线段的长为( )A. B. C. D.4、钟表上1时30分时,时针与分针所成的角是( )A. B. C. D.以上答案都不对5、已知线段AB、CD,AB大于CD,如果将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,这时点B的位置必定是( )A.点B在线段CD上(C、D之间) B.点B与点D重合C.点B在线段CD的延长线上 D.点B在线段DC的延长线上6、如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是( )A.北偏西55° B.北偏东65° C.北偏东35° D.北偏西35°7、如图,将三个三角板直角顶点重叠在一起,公共的直角顶点为点,若,,那么的度数为( )A. B. C. D.8、如图,点C是线段AB的中点,点D是线段AC的中点,若AB=8,则CD的长为( )A.2 B.4 C.6 D.89、如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,那么线段AC的长为( )A.10cm B.2cm C.10或2cm D.无法确定10、如图,OM平分,,,则( )A.96° B.108° C.120° D.144°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知∠1的余角等于,那么∠1的补角等于______.2、西北方向:_________;西南方向:__________;东南方向:__________;东北方向:__________3、将一副三角板如图所示摆放,使其中一个三角板60°角的顶点与另一个三角板的直角顶点重合,若已知,则的度数是__________;4、已知∠α和∠β互为补角,并且∠β的一半比∠α小30°,则∠α=_____,∠β=_____.5、如图,C是线段AB上一点,D是线段CB的中点,,.若点E在线段AB上,且,则______.三、解答题(5小题,每小题10分,共计50分)1、已知:如图1,是定长线段上一定点,两点分别从,出发以,的速度沿向左运动,运动方向如箭头所示(在线段上,在线段上)(1)若,当点运动了,求的值;(2)若点运动时,总有,试说明;(3)如图2,已知,是线段所在直线上一点,且,求的值.2、如图,已知点A,B,C,请按要求画出图形.(1)画直线AB和射线CB;(2)连结AC,并在直线AB上用尺规作线段AE,使;(要求保留作图痕迹)3、已知∠AOD=160°,OB为∠AOD内部的一条射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD,求∠MON的度数为 ;(2)如图2,∠BOC在∠AOD内部(∠AOC>∠AOB),且∠BOC=20°,OF平分∠AOC,OG平分∠BOD(射线OG在射线OC左侧),求∠FOG的度数;(3)在(2)的条件下,∠BOC绕点O运动过程中,若∠BOF=8°,求∠GOC的度数.4、已知线段(如图),C是AB反向延长线上的点,且,D为线段BC的中点.(1)将CD的长用含a的代数式表示为________;(2)若,求a的值.5、如图,已知A、B、C、D是正方形网格纸上的四个格点,根据要求在网格中画图并标注相关字母.(1)画射线;(2)画直线;(3)在直线上找一点P,使得最小. -参考答案-一、单选题1、B【解析】略2、A【解析】【分析】设∠BOD=x,分别表示出∠COD,∠COE,根据∠EOD=50°得出方程,解之即可.【详解】解:设∠BOD=x,∵OD平分∠COB,∴∠BOD=∠COD=x,∴∠AOC=180°-2x,∵∠AOE=3∠EOC,∴∠EOC=∠AOC==,∵∠EOD=50°,∴,解得:x=10,故选A.【点睛】本题考查角平分线的意义,通过图形表示出各个角,是正确计算的前提.3、B【解析】【分析】先求出,再根据中点求出,即可求出的长.【详解】解:∵,∴,,∵点是线段的中点,∴,,故选:B.【点睛】本题考查了线段中点有关的计算,解题关键是准确识图,理清题目中线段的关系.4、C【解析】【分析】钟表上12个大格把一个周角12等分,每个大格30°,1点30分时针与分针之间共4.5个大格,故时针与分针所成的角是4.5×30°=135°.【详解】解:∵1点30分,时针指向1和2的中间,分针指向6,中间相差4格半,钟表12个数字,每相邻两个数字之间的夹角为30°,∴1点30分分针与时针的夹角是4.5×30°=135°.故选:C.【点睛】本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.5、C【解析】【分析】根据题意画出符合已知条件的图形,根据图形即可得到点B的位置.【详解】解:AB大于CD,将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,∴点B在线段CD的延长线上,故选:C.【点睛】本题考查了比较两线段的大小的应用,主要考查学生的观察图形的能力和理解能力.6、D【解析】【分析】如图,根据两船同时出发,同速行驶,假设相撞时得到AC=BC,求出∠CBA=∠CAB=90°-35°=55°,即可得到答案.【详解】解:假设两船相撞,如同所示,根据两船的速度相同可得AC=BC,∴∠CBA=∠CAB=90°-35°=55°,∴乙的航向不能是北偏西35°,故选:D.【点睛】此题考查了方位角的表示方法,角度的运算,正确理解题意是解题的关键.7、B【解析】【分析】根据∠ABE=45°,由角的和差关系求出∠CBG,再根据∠GBH=30°,由角的和差关系求出∠FBG,最后根据∠FBC=∠FBG-∠CBG进行计算即可.【详解】解:∵∠ABE=45°,∴∠CBE=45°,∴∠CBG=45°,∵∠GBH=30°,∴∠FBG=60°,∴∠FBC=∠FBG-∠CBG=60°-45°=15°.故选B.【点睛】此题考查了角的和差计算,关键是根据已知条件求出角的度数,要能根据图形找出角之间的关系.8、A【解析】【分析】根据线段中点的定义计算即可.【详解】解:∵点C是线段AB的中点,∴AC=,又∵点D是线段AC的中点,∴CD=,故选:A.【点睛】本题考查了线段中点的定义,掌握线段中点的定义是关键.9、C【解析】【分析】分AC=AB+BC和AC=AB-BC,两种情况求解.【详解】∵A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,当AC=AB+BC时,AC=6+4=10;当AC=AB-BC时,AC=6-4=2;∴AC的长为10或2cm故选C.【点睛】本题考查了线段的和差计算,分AB,BC同向和逆向两种情形是解题的关键.10、B【解析】【分析】设,利用关系式,,以及图中角的和差关系,得到、,再利用OM平分,列方程得到,即可求出的值.【详解】解:设,∵,∴,∴.∵,∴,∴.∵OM平分,∴,∴,解得..故选:B.【点睛】本题通过图形中的角的和差关系,利用方程的思想求解角的度数.其中涉及角的平分线的理解:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.二、填空题1、135°20′【解析】【分析】求出∠1的度数,再求∠1的补角即可.【详解】解:∵∠1的余角等于,∴∠1=90°-45°20′=44°40′,∴∠1的补角为180°-∠1=180°-44°40′=135°20′,故答案为:135°20′.【点睛】本题考查互为余角,互为补角的意义,正确理解互余、互补的意义和度分秒的计算方法是解题的前提.2、 射线OE 射线OF 射线OG 射线OH【解析】略3、28°28′【解析】【分析】根据∠DAE=90°,,求出∠EAC的度数,再根据∠1=∠BAC −∠EAC即可得出答案.【详解】解:∵∠DAE=90°,,∴∠EAC=31°32′,∵∠BAC=60°,∴∠1=∠BAC −∠EAC=60°-31°32′=28°28′,故答案为:28°28′.【点睛】本题主要考查了余角的概念和度分秒的换算,关键是求出∠EAC的度数,是一道基础题.4、 80°##80度 100°##100度【解析】【分析】根据互为补角的和等于180°,得到α=180°-β,然后根据题意列出关于β的一元一次方程,求解即可.【详解】解:∵∠α和∠β互为补角,∴α=180°-β,根据题意得,180°-β-β=30°,解得β=100°,α=180°-β=80°,故答案为:80°,100°.【点睛】本题考查了互为补角的和等于180°的性质,根据题意列出一元一次方程是解题的关键.5、4或8##8或4【解析】【分析】先分别求出BD、BC的长度,再分点E在点C的左边和点E在点C的右边求解即可.【详解】解:∵AB=10,AD=7,∴BD=AB-AD=10-7=3,∵D为CB的中点,∴BC=2BD=6,当点E在点C的左边时,如图1,∵CE=2,∴BE=BC+CE=6+2=8;当点E在点C的右边时,如图2,则BE=BC-CE=6-2=4,综上,BE=4或8,故答案为:4或8.【点睛】本题考查线段的和与差、线段的中点,熟练掌握线段的运算,利用分类讨论思想求解是解答的关键.三、解答题1、 (1)2cm(2)见解析(3)或【解析】【分析】(1)根据运动的时间为2s,结合图形可得出,,即可得出,再由,即得出AC+MD的值;(2)根据题意可得出,.再由,可求出,从而可求出,即证明;(3)①分类讨论当点在线段上时、②当点在线段的延长线上时和③当点在线段的延长线上时,根据线段的和与差结合,即可求出线段MN和AB的等量关系,从而可求出的值,注意舍去不合题意的情形.(1)∵时间时,,,∴;(2)∵,,又∵,∴,∴,∴,∴;(3)①如图,当点在线段上时,∵,∴,∴,∴; ②如图,当点在线段的延长线上时,∵,∴,∴, ③如图,当点在线段的延长线上时,,这种情况不可能,综上可知,的值为或.【点睛】本题考查线段的和与差、与线段有关的动点问题.利用数形结合和分类讨论的思想是解答本题的关键.2、 (1)见解析(2)见解析【解析】【分析】(1)根据直线和射线的定义画图即可;(2)先连结AC,然后以点A圆心,以AC为半径,在直线AB上顺次截取2次即可;(1)如图所示;(2)如图所示,或【点睛】本题主要考查了作图知识及把几何语言转化为几何图形的能力,比较简单,直线向两方无限延伸,射线向一方无限延伸,而线段不延伸.也考查了作一条线段等于已知线段的尺规作图.3、 (1)80°;(2)70°(3)42°或58°.【解析】【分析】(1)根据角平分线的性质证得∠BOM=∠AOB,∠BON=∠BOD,即可得到答案;(2)设∠BOF=x,根据角平分线的性质求出∠AOC=2∠COF=40°+2x,得到∠COD=∠AOD-∠AOC=140°-2x,由OG平分∠BOD,求出∠BOG=∠BOD=70°−x,即可求出∠FOG的度数;(3)分两种情况:①当OF在OB右侧时,由∠BOC=20°,∠BOF=8°,求得∠COF的度数,利用OF平分∠AOC,得到∠AOC的度数,得到∠BOD的度数,根据OG平分∠BOD,求出∠BOG的度数,即可求出答案;②当OF在OB左侧时,同理即可求出答案.(1)解:∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=∠AOB,∠BON=∠BOD,∴∠MON=∠BOM+∠BON=∠AOB+∠BOD=∠AOD=80°;故答案为:80°;(2)解:设∠BOF=x,∵∠BOC=20°,∴∠COF=20°+x,∵OF平分∠AOC,∴∠AOC=2∠COF=40°+2x,∴∠COD=∠AOD-∠AOC=140°-2x,∵OG平分∠BOD,∴∠BOG=∠BOD=70°−x,∴∠FOG=∠BOG+∠BOF=70°−x+x=70°;(3)解:当OF在OB右侧时,如图,∵∠BOC=20°,∠BOF=8°,∴∠COF=28°,∵OF平分∠AOC,∴∠AOC=2∠COF=56°,∴∠COD=∠AOD-∠AOC=104°,∴∠BOD=124°,∵OG平分∠BOD,∴∠BOG=∠BOD=62°,∴∠GOC=∠BOG−∠BOC=62°−20°=42°.当OF在OB左侧时,如图,∵∠BOC=20°,∠BOF=8°,∴∠COF=12°,∵OF平分∠AOC,∴∠AOC=2∠COF=24°,∴∠COD=∠AOD-∠AOC=136°,∴∠BOD=156°,∵OG平分∠BOD,∴∠BOG=∠BOD=78°,∴∠GOC=∠BOG−∠BOC=78°−20°=58°.∴∠GOC的度数为42°或58°.【点睛】此题考查了几何图形中角度的计算,角平分线的有关计算,正确掌握角平分线的定义及图形中各角度之间的位置关系进行计算是解题的关键.4、 (1)a(2)9cm【解析】【分析】(1)首先求出CB的长;然后根据D为线段BC的中点,求出CD的长即可.(2)首先根据AD=3cm表示出CD;然后得到方程,求出a的值即可.(1)解:∵AB=a,AC=AB=a,∴CB=a+a=a,∵D为线段BC的中点,∴CD=CB=a;(2)∵AC=a,AD=3cm,∴CD=a+3,∴a+3=a,解得:a=9.【点睛】此题主要考查了两点间的距离的求法,以及线段的中点的特征和应用,要熟练掌握.5、 (1)画图见解析;(2)画图见解析;(3)画图见解析.【解析】【分析】(1)根据射线的定义连接BA并延长即可求解;(2)根据直线的定义连接AC并向两端延长即可求解;(3)连接AC和BD,根据两点之间线段最短可得AC与BD的交点即为点P.(1)解:如图所示,连接BA并延长即为要求作的射线BA,(2)解:连接AC并向两端延长即为要求作的直线AC,(3)解:如图所示,连接AC和BD,∵两点之间线段最短,∴当点P,B,D在一条直线上时,最小,∴线段AC与BD的交点即为要求作的点P.【点睛】本题主要是考查了几何作图能力以及两点之间线段最短和直线的概念,熟练掌握画图技巧,是解决作图题的关键.
相关试卷
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时作业,共20页。试卷主要包含了下列说法正确的是,已知线段AB,若的补角是,则的余角是,如果A等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂检测题,共21页。试卷主要包含了下列说法错误的是,下列各角中,为锐角的是等内容,欢迎下载使用。
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂达标检测题,共24页。试卷主要包含了如图,点在直线上,平分,,,则,下列说法正确的是,已知线段AB等内容,欢迎下载使用。