![2022年最新鲁教版(五四制)六年级数学下册第五章基本平面图形综合练习试卷(含答案详解)第1页](http://img-preview.51jiaoxi.com/2/3/12734207/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新鲁教版(五四制)六年级数学下册第五章基本平面图形综合练习试卷(含答案详解)第2页](http://img-preview.51jiaoxi.com/2/3/12734207/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新鲁教版(五四制)六年级数学下册第五章基本平面图形综合练习试卷(含答案详解)第3页](http://img-preview.51jiaoxi.com/2/3/12734207/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂检测题
展开
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂检测题,共27页。试卷主要包含了下列说法错误的是,在下列生活,如图,OM平分,,,则等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知点C、D在线段AB上,且AC:CD:DB=2:3:4,如果AB=18,那么线段AD的长是( )A.4 B.5 C.10 D.142、在9:30这一时刻,时钟上的时针和分针之间的夹角为( )A. B. C. D.3、如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,那么线段AC的长为( )A.10cm B.2cm C.10或2cm D.无法确定4、下列说法错误的是( )A.两点之间,线段最短B.经过两点有一条直线,并且只有一条直线C.延长线段AB和延长线段BA的含义是相同的D.射线AB和射线BA不是同一条射线5、如图,已知线段n与挡板另一侧的四条线段a,b,c,d中的一条在同一条直线上,请借助直尺判断该线段是( )A.a B.b C.c D.d6、在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是( )①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上.A.①② B.①④ C.②③ D.③④7、延长线段AB到C,使得BC=3AB,取线段AC的中点D,则下列结论:①点B是线段AD的中点.②BD=CD,③AB=CD,④BC﹣AD=AB.其中正确的是( )A.①②③ B.①②④ C.①③④ D.②③④8、如图所示,下列表示角的方法错误的是( )A.∠1与∠AOB表示同一个角B.图中共有三个角:∠AOB,∠AOC,∠BOCC.∠β+∠AOB=∠AOCD.∠AOC也可用∠O来表示9、如图,OM平分,,,则( )A.96° B.108° C.120° D.144°10、如图,一副三角板(直角顶点重合)摆放在桌面上,若,则等于( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知射线OA与射线OB垂直,射线OA表示的方向是北偏西25°方向,则射线OB表示的方向为南偏西________方向.2、、、三个城市的位置如右图所示,城市在城市的南偏东60°方向,且,则城市在城市的______方向.3、如图,直线AB和CD相交于点O,∠AOD=3∠AOC,则直线AB和CD的夹角是______.4、=_____度,90°﹣=___° __.5、如图,已知数轴上点A、B、C所表示的数分别为a、b、c,C为线段AB的中点,且,如果原点在线段AC上,那么______.三、解答题(5小题,每小题10分,共计50分)1、如图,已知线段a,b.(尺规作图,保留作图痕迹,不写作法)求作:线段.2、解答下列各题:(1)化简并求值:(a﹣ab)+(b+2ab)﹣(a+b),其中a=7,b=﹣.(2)如图,OD为∠AOB的平分线,∠AOC=2∠BOC,AO⊥CO,求∠COD的度数.3、如图,直线、相交于点,,.(1)若,则 __________.(2)从(1)的时刻开始,若将绕以每秒15的速度逆时针旋转一周,求运动多少秒时,直线平分.(3)从(1)的时刻开始,若将绕点逆时针旋转一周,如果射线是的角平分线,请直接写出此过程中与的数量关系.(不考虑与、重合的情况)4、如图(1),直线、相交于点,直角三角板边落在射线上,将三角板绕点逆时针旋转180°.(1)如图(2),设,当平分时,求(用表示)(2)若,①如图(3),将三角板旋转,使落在内部,试确定与的数量关系,并说明理由.②若三角板从初始位置开始,每秒旋转5°,旋转时间为,当与互余时,求的值.5、已知∠AOB,射线OC在∠AOB的内部,射线OM是∠AOC靠近OA的三等分线,射线ON是∠BOC靠近OB的三等分线.(1)如图,若∠AOB=120°,OC平分∠AOB,①补全图形;②填空:∠MON的度数为 .(2)探求∠MON和∠AOB的等量关系. -参考答案-一、单选题1、C【解析】【分析】设AC=2x,CD=3x,DB=4x,根据题意列方程即可得到结论.【详解】∵AC:CD:DB=2:3:4,∴设AC=2x,CD=3x,DB=4x,∴AB=9x,∵AB=18,∴x=2,∴AD=2x+3x=5x=10,故选:C.【点睛】本题考查了两点间的距离,线段的中点的定义,正确的理解题意是解题的关键.2、A【解析】【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:9:30时针与分针相距3.5份,每份的度数是30°,在时刻9:30,时钟上时针和分针之间的夹角(小于平角的角)为3.5×30°=105°.故选:A.【点睛】本题考查了钟面角,利用时针与分针相距的份数乘以每份的度数是解题关键.3、C【解析】【分析】分AC=AB+BC和AC=AB-BC,两种情况求解.【详解】∵A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,当AC=AB+BC时,AC=6+4=10;当AC=AB-BC时,AC=6-4=2;∴AC的长为10或2cm故选C.【点睛】本题考查了线段的和差计算,分AB,BC同向和逆向两种情形是解题的关键.4、C【解析】【分析】根据两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义依次分析判断.【详解】解:A. 两点之间,线段最短,故该项不符合题意;B. 经过两点有一条直线,并且只有一条直线,故该项不符合题意;C. 延长线段AB和延长线段BA的含义是不同的,故该项符合题意;D. 射线AB和射线BA不是同一条射线,故该项不符合题意;故选:C.【点睛】此题考查了两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义,综合掌握各知识点是解题的关键.5、B【解析】【分析】利用直尺画出遮挡的部分即可得出结论.【详解】解:利用直尺画出图形如下:可以看出线段b与n在一条直线上.故选:B.【点睛】本题主要考查了线段,射线,直线,利用直尺动手画出图形是解题的关键.6、B【解析】【分析】直接利用直线的性质以及线段的性质分析求解即可.【详解】①用两颗钉子就可以把木条固定在墙上,可以用基本事实“两点确定一条直线”来解释;②把笔尖看成一个点,当这个点运动时便得到一条线,可以用基本事实“无数个点组成线”来解释;③把弯曲的公路改直,就能缩短路程,可以用基本事实“两点之间线段最短”来解释;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上,可以用基本事实“两点确定一条直线”来解释;综上可得:①④可以用“两点确定一条直线”来解释,故选:B.【点睛】此题主要考查了直线的性质以及线段的性质,正确把握相关性质是解题关键.7、B【解析】【分析】先根据题意,画出图形,设 ,则 ,根据点D是线段AC的中点,可得 ,从而得到 ,BD=CD,AB=CD, ,即可求解.【详解】解:根据题意,画出图形,如图所示:设 ,则 ,∵点D是线段AC的中点,∴ ,∴ ,∴AB=BD,即点B是线段AD的中点,故①正确;∴BD=CD,故②正确;∴AB=CD,故③错误;∴ ,∴BC﹣AD=AB,故④正确;∴正确的有①②④.故选:B【点睛】本题主要考查了考查了线段的和与差,有关中点的计算,能够用几何式子正确表示相关线段间的关系,利用数形结合思想解答是解题的关键.8、D【解析】【分析】根据角的表示方法表示各个角,再判断即可.【详解】解:A、∠1与∠AOB表示同一个角,正确,故本选项不符合题意;B、图中共有三个角:∠AOB,∠AOC,∠BOC,正确,故本选不符合题意;C、∠β表示的是∠BOC,∠β+∠AOB=∠AOC,正确,故本选项不符合题意;D、∠AOC不能用∠O表示,错误,故本选项符合题意;故选:D.【点睛】本题考查了对角的表示方法的应用,主要检查学生能否正确表示角.9、B【解析】【分析】设,利用关系式,,以及图中角的和差关系,得到、,再利用OM平分,列方程得到,即可求出的值.【详解】解:设,∵,∴,∴.∵,∴,∴.∵OM平分,∴,∴,解得..故选:B.【点睛】本题通过图形中的角的和差关系,利用方程的思想求解角的度数.其中涉及角的平分线的理解:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.10、A【解析】【分析】由三角板中直角三角尺的特征计算即可.【详解】∵和为直角三角尺∴,∴∴∴故选:A.【点睛】本题考查了三角板中的角度运算,直角三角板的角度分别为90°,45°,45°和90°,60°,30°.二、填空题1、【解析】【分析】如图(见解析),先根据射线的方位角可得,再根据角的和差即可得.【详解】解:如图,由题意得:,,则,即射线表示的方向为南偏西方向,故答案为:.【点睛】本题考查了方位角、角的和差、垂直,掌握理解方位角是解题关键.2、35°##35度【解析】【分析】根据方向角的表示方法可得答案.【详解】解:如图, ∵城市C在城市A的南偏东60°方向,∴∠CAD=60°,∴∠CAF=90°-60°=30°,∵∠BAC=155°,∴∠BAE=155°-90°-30°=35°,即城市B在城市A的北偏西35°,故答案为:35°.【点睛】本题考查了方向角,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.3、45°##45度【解析】【分析】∠AOD=3∠AOC,∠AOD+∠AOC=180°,计算求解∠AOC的值即为所求.【详解】解:由题意知,直线AB和CD的夹角是∠AOC或∠BOD∵∠AOD=3∠AOC,∠AOD+∠AOC=180°∴∠AOC=45°故答案为:45°.【点睛】本题考查了补角.解题的关键在于正确的找出角度之间的数量关系.4、 【解析】【分析】根据角度的和差以及角度值进行化简计算即可【详解】解:90°﹣故答案为:【点睛】本题考查了角度的和差以及角度值,掌握角度值单位的转化是解题的关键.5、2【解析】【分析】根据中点的定义可知,再由原点在线段AC上,可判断,再化简绝对值即可.【详解】解:∵C为线段AB的中点,且,∴,即,∵原点在线段AC上,∴,;故答案为:2.【点睛】本题考查了线段的中点和化简绝对值,解题关键是根据中点的定义和数轴确定.三、解答题1、见解析【解析】【分析】作射线AM,在射线AM,上顺次截取AC=a,CD=a,再反向截取DB=b,进而可得线段AB.【详解】解:如图,线段AB即为所求作的线段.【点睛】本题考查尺规作图—线段的和差,是基础考点,掌握相关知识是解题关键.2、 (1)ab,-1(2)22.5°【解析】【分析】(1)首先化简(a-ab)+(b+2ab)-(a+b),然后把a=7,b=代入化简后的算式即可.(2)根据垂直的定义得到∠AOC=90°,求得∠AOB=∠AOC+∠BOC=135°,根据角平分线的定义求出∠BOD,再减去∠BOC可得结果.【小题1】解:(a-ab)+(b+2ab)-(a+b)=a-ab+b+2ab-a-b=ab当a=7,b=时,原式=7×()=-1.【小题2】∵AO⊥CO,∴∠AOC=90°,∵∠AOC=2∠BOC,∴∠BOC=45°,∴∠AOB=∠AOC+∠BOC=135°,∵OD是∠AOB的平分线,∴∠BOD=∠AOB=67.5°,∴∠COD=∠BOD-∠BOC=22.5°.【点睛】此题主要考查了整式的加减-化简求值问题,角度的计算,角平分线的定义,要熟练掌握,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.3、 (1)30°(2)11或23秒(3)或【解析】【分析】(1)根据,,利用余角性质得出∠EOB=90°-∠COE=90°-30°=60°,根据,利用余角性质得出∠BOF=90°-∠EOB=90°-60°=30°即可;(2)解分两种情形,平分,得出,,设运动秒时 根据运动转过的角度列方程,平分,,根据运动转过的角度列方程,解方程即可;(3)分四种情况OE在∠COB内,OE在∠AOC内,OE在∠AOD内,OE在∠DOB内,根据射线是的角平分线∠COP=∠EOP,利用角的和差计算即可.(1)解:∵,,∴∠EOB=90°-∠COE=90°-30°=60°,∵,∴∠BOF=90°-∠EOB=90°-60°=30°,故答案是:30°;(2)解分两种情形,情况一∵平分,∴,∴,设运动秒时,平分,根据题意得:,解得:;情况二∵平分,∴,设运动秒时,平分,根据题意得:,解得:;综上:运动11或23秒时,直线平分;(3)解:∵射线是的角平分线∴∠COP=∠EOP,∠AOC=∠EOF=90°,∴∠AOP=90°+∠COP=90°+∠POE,∵∠COE=∠BOF,∴∠POE=,∴,∵∠COE=∠BOF,射线是的角平分线,∴∠POC=,∴∠AOP=90°-∠COP=90°-,∴,∵∠COE=90°+∠COF=∠BOF,射线是的角平分线,∴∠POC=,∴∠AOP=90°-∠COP=90°-,∴,∵∠COE=90°+∠BOE=∠BOF,射线是的角平分线,∴∠POC=,∴∠AOP=90°+∠COP=90°+,∴;综上:或.【点睛】本题考查余角定义,角平分线有关的运算,一元一次方程,分类讨论思想的应用,掌握余角定义,角平分线有关的运算,一元一次方程,分类讨论思想的应用是解题关键.4、 (1)(2)①,理由见解析;②4秒或22秒【解析】【分析】(1)利用角的和差关系求解 再利用角平分线的含义求解即可;(2)①设,再利用角的和差关系依次求解, ,, 从而可得答案;②由题意得:与重合是第18秒,与重合是第8秒,停止是36秒.再分三种情况讨论:如图,当时 ,,如图,当时 ,,如图,当时,,,再利用互余列方程解方程即可.(1)解: ∵平分 ∴(2)解:①设,则, ∴∴, ∴②由题意得:与重合是第18秒,与重合是第8秒,停止是36秒.如图,当时 ,, 则, ∴如图,当时 ,,则,方程无解,不成立如图,当时,,,则, ∴综上所述秒或22秒【点睛】本题考查的是角的和差运算,角平分线的定义,角的动态定义的理解,互为余角的含义,清晰的分类讨论是解本题的关键.5、 (1)①见解析;②(2),见解析【解析】【分析】(1)①根据∠AOB=120°,OC平分∠AOB,先求出∠BOC=∠AOC=, 在根据OM是∠AOC靠近OA的三等分线,求出∠AOM=,根据ON是∠BOC靠近OB的三等分线,∠BON=,然后在∠AOB内部,先画∠AOC=60°,在∠AOC内部,画∠AOM=20°,在∠BOC内部,画∠BON即可;②根据∠AOM=,∠BON=,∠AOB=120°,可求∠MON=∠AOB-∠AOM-∠BON=120°-20°-20°=80°即可;(2)根据OM是∠AOC靠近OA的三等分线, ON是∠BOC靠近OB的三等分线.可求∠AOM=,∠BON=,可得 .(1)①∵∠AOB=120°,OC平分∠AOB,∴∠BOC=∠AOC=, ∵OM是∠AOC靠近OA的三等分线,∴∠AOM=,∵ON是∠BOC靠近OB的三等分线,∴∠BON=,在∠AOB内部,先画∠AOC=60°,在∠AOC内部,画∠AOM=20°,在∠BOC内部,画∠BON,补全图形;②∵∠AOM=,∠BON=,∠AOB=120°,∴∠MON=∠AOB-∠AOM-∠BON=120°-20°-20°=80°,∴∠MON的度数是80°,故答案为:80°(2)∠MON=∠AOB.∵OM是∠AOC靠近OA的三等分线, ON是∠BOC靠近OB的三等分线.∴∠AOM=,∠BON=,∴ ,,,.【点睛】本题考查画图,角平分线定义,等分角,掌握角平分线定义,等分角,根据角的度数画角是解题关键.
相关试卷
这是一份初中第五章 基本平面图形综合与测试一课一练,共27页。试卷主要包含了如图所示,点E,如果A等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试练习题,共25页。试卷主要包含了已知线段AB,如图所示,B,已知点C等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂检测题,共21页。试卷主要包含了若,则的补角的度数为等内容,欢迎下载使用。