初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试随堂练习题
展开
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试随堂练习题,共24页。试卷主要包含了下列两个生活,在一幅七巧板中,有我们学过的等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、①直线AB和直线BA是同一条直线;②平角等于180°;③一个角是70°39',它的补角是19°21';④两点之间线段最短;以上说法正确的有( )A.②③④ B.①②④ C.③④ D.①2、如图,王伟同学根据图形写出了四个结论:①图中共有3条直线;②图中共有7条射线;③图中共有6条线段;④图中射线BC与射线CD是同一条射线.其中结论正确的有( )A.1个 B.2个 C.3个 D.4个3、如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,那么线段AC的长为( )A.10cm B.2cm C.10或2cm D.无法确定4、如图,∠BOC=90°,∠COD=45°,则图中互为补角的角共有( )A.一对 B.二对 C.三对 D.四对5、如图,某同学从处出发,去位于处的同学家交流学习,其最近的路线是( )A. B.C. D.6、下列两个生活、生产中现象:①用两个钉子就可以把木条固定在墙;②植树时,只要定出两棵树的位置就能确定同一行树所在直线;③从A地到B地架设电线,总是尽可能沿着直线架设;④把弯曲的公路修直就能缩短路程.其中可以用“两点之间线段最短”来解释现象为( )A.①② B.①③ C.②④ D.③④7、①线段,AB的中点为D,则;②射线;③OB是的平分线,,则;④把一个周角6等分,每份是60°.以上结论正确的有( )A.②③ B.①④ C.①③④ D.①②③8、如图,O是直线AB上一点,则图中互为补角的角共有( )A.1对 B.2对 C.3对 D.4对9、在一幅七巧板中,有我们学过的( )A.8个锐角,6个直角,2个钝角 B.12个锐角,9个直角,2个钝角C.8个锐角,10个直角,2个钝角 D.6个锐角,8个直角,2个钝角10、校园中常常看到“在草坪上斜踩出一条小路”,请用数学知识解释图中这一不文明现象,其原因为( )A.直线外一点与直线上点之间的连线段有无数条 B.过一点有无数条直线C.两点确定一条直线 D.两点之间线段最短第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、式子的最小值是______.2、在数轴上,点A(表示整数a)在原点O的左侧,点B(表示整数b)在原点O的右侧,若|a﹣b|=2022,且AO=2BO,则a+b的值为___.3、如图,点,是直线上的两点,点,在直线上且点在点的左侧,点在点的右侧,,.若,则____.4、下列结论:①多项式的次数为3;②若,则OP平分∠AOB;③满足的整数x的值有5个;④若,则关于x的一元一次方程的解为.其中正确的结论是___(填序号).5、如图,点C、D在线段AB上,线段,若线段,,则线段CD的长度为______cm.三、解答题(5小题,每小题10分,共计50分)1、已知线段a,b,点A,P位置如图所示.(1)画射线AP,请用圆规在射线AP上截取AB=a,BC=b;(保留作图痕迹,不写作法)(2)在(1)所作图形中,若M,N分别为AB,BC的中点,在图形中标出点M,N的位置,再求出当a=4,b=2时,线段MN的长.2、如图,是内的两条射线,平分,,若,,求的度数.3、已知P为线段AB上一点,AP与PB的长度之比为3∶2,若cm,求PB,AB的长.4、如图①.直线上有一点, 过点在直线上方作射线, 将一直角三角板(其中)的直角顶点放在点处, 一条直角边在射线 上, 另一边OA在直线DE的上方,将直角三角形绕着点O按每秒的速度顺时针旋转一周,设旋转时间为t秒.(1)当直角三角板旋转到图②的伩置时, 射线恰好平分, 此时, 与 之间的数量关系为____________.(2)若射线的位置保持不变, 且,①在旋转过程中,是否存在某个时刻,使得射线, 射线, 射线中的某一条射线是另外两条射线所夹锐角的角平分线? 若存在,请求出的值; 若不存在, 请说明理由;②在旋转过程中, 当边与射线相交时, 如图③, 请直接写出的值____________.5、如图,已知∠AOB=120°,OC是∠AOB内的一条射线,且∠AOC:∠BOC=1:2.(1)求∠AOC,∠BOC的度数;(2)作射线OM平分∠AOC,在∠BOC内作射线ON,使得∠CON:∠BON=1:3,求∠MON的度数;(3)过点O作射线OD,若2∠AOD=3∠BOD,求∠COD的度数. -参考答案-一、单选题1、B【解析】【分析】根据直线的表示方法,平角,补角,线段的性质逐个判断即可.【详解】①直线AB和直线BA是同一条直线,正确②平角等于180°,正确③一个角是70°39',它的补角应为:,所以错误④两点之间线段最短,正确故选B【点睛】本题考查直线的表示方法,平角,补角,线段的性质等知识点,熟练掌握以上知识点是解题的关键.2、A【解析】【分析】根据直线、线段、射线的区别逐项分析判断即可【详解】解:①图中只有直线BD,1条直线,原说法错误;②图中共有2×3+1×2=8条射线,原说法错误;③图中共有6条线段,即线段,原说法是正确的;④图中射线BC与射线CD不是同一条射线,原说法错误.故正确的有③,共计1个故选:A.【点睛】本题考查了直线、线段、射线的区别与联系,理解三者的区别是解题的关键.3、C【解析】【分析】分AC=AB+BC和AC=AB-BC,两种情况求解.【详解】∵A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,当AC=AB+BC时,AC=6+4=10;当AC=AB-BC时,AC=6-4=2;∴AC的长为10或2cm故选C.【点睛】本题考查了线段的和差计算,分AB,BC同向和逆向两种情形是解题的关键.4、C【解析】【分析】根据∠BOC=90°,∠COD=45°求出∠AOC=90°,∠BOD=45°,∠AOD=135°,进而得出答案.【详解】解:∵∠BOC=90°,∠COD=45°,∴∠AOC=90°,∠BOD=45°,∠AOD=135°,∴∠AOC+∠BOC=180°,∠AOD+∠COD=180°,∠AOD+∠BOD=180°,∴图中互为补角的角共有3对,故选:C.【点睛】本题考查了补角的定义,理解互为补角的两角之和为180°是解题的关键.5、B【解析】【分析】根据两点之间线段最短,对四个选项中的路线作比较即可.【详解】解:四个选项均为从A→C然后去B由两点之间线段最短可知,由C到B的连线是最短的由于F在CB线上,故可知A→C→F→B是最近的路线故选B.【点睛】本题考查了两点之间线段最短的应用.解题的关键在于正确理解两点之间线段最短.6、D【解析】【分析】分别利用直线的性质以及线段的性质分析得出答案.【详解】解:①用两个钉子就可以把木条固定在墙上,是两点确定一条直线,故此选项错误;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线,是两点确定一条直线,故此选项错误;③从A地到B地架设电线,总是尽可能沿着直线架设,是两点之间,线段最短,故此选项正确;④把弯曲的公路改直,就能缩短路程,是两点之间,线段最短,故此选项正确;故选:D.【点睛】此题主要考查了直线的性质以及线段的性质,正确把握直线与线段的性质是解题关键.7、B【解析】【分析】分别根据中点的定义,射线的性质,角平分线的定义,周角的定义逐项判断即可求解.【详解】解:①线段,AB的中点为D,则,故原判断正确;②射线没有长度,故原判断错误;③OB是的平分线,,则,故原判断错误;④把一个周角6等分,每份是60°,故原判断正确.故选:B【点睛】本题考查了中点的定义,射线的理解,角平分线的性质,周角的定义等知识,熟知相关知识是解题关键.8、B【解析】【分析】根据补角定义解答.【详解】解:互为补角的角有:∠AOC与∠BOC,∠AOD与∠BOD,共2对,故选:B.【点睛】此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.9、B【解析】【分析】根据一副七巧板图形,查出锐角,直角和钝角的个数即可.【详解】5个等腰直角三角形,5个直角,10个锐角,1个正方形,4个直角,1个平行四边形,2个钝角,2个锐角,在一幅七巧板中根据12个锐角,9个直角,2个钝角.故选择B.【点睛】本题考查角的分类,平面图形,掌握角的分类,平面图形是解题关键.10、D【解析】【分析】根据题意可知,原因为两点之间线段最短,据此分析即可【详解】解:校园中常常看到“在草坪上斜踩出一条小路”, 其原因为两点之间线段最短故选D【点睛】本题考查了线段的性质,掌握两点之间线段最短是解题的关键.二、填空题1、16【解析】【分析】画出数轴,根据两点间的距离公式解答.【详解】解:如图1,当点P与点C重合时,点P到A、B、C、D、E各点的距离之和为:PA+PB+PC+PD+PE=(PA+PE)+(PB+PD)+PC=AE+BD+0=AE+BD;如图2,当点P与点C不重合时,点P到A、B、C、D、E各点的距离之和为:PA+PB+PC+PD+PE=(PA+PE)+(PB+PD)+PC=AE+BD+PC;∵AE+BD+PC> AE+BD,∴当点P与点C重合时,点P到A、B、C、D、E各点的距离之和最小,令数轴上数x表示的为P,则表示点P到A、B、C、D、E各点的距离之和,∴当x=2时,取得最小值,∴的最小值==5+3+0+3+5=16,故答案为:16.【点睛】本题考查了绝对值意义、数轴上两点间的距离,数形结合是解答本题的关键.2、-674【解析】【分析】根据绝对值和数轴表示数的方法,可求出OA,OB的长,进而确定a、b的值,再代入计算即可.【详解】∵|a﹣b|=2022,即数轴上表示数a的点A,与表示数b的点B之间的距离为2022,∴ AB=2022,∵且AO=2BO,∴OB=674,OA=1348,∵点A(表示整数a)在原点O的左侧,点B(表示整数b)在原点O的右侧,∴a=﹣1348,b=674,∴a+b=﹣1348+674=﹣674,故答案为:﹣674.【点睛】本题考查数轴表示数,代数式求值以及绝对值的定义,掌握数轴表示数的方法,绝对值的定义是解决问题的前提.3、6或22##22或6【解析】【分析】根据两点间的距离,分情况讨论C点的位置即可求解.【详解】解:∵,∴点C不可能在A的左侧,如图1,当C点在A、B之间时,设BC=k,∵AC:CB=2:1,BD:AB=3:2,则AC=2k,AB=3k,BD=k,∴CD=k+k=k,∵CD=11,∴k=11,∴k=2,∴AB=6;如图2,当C点在点B的右侧时,设BC=k,∵AC:CB=2:1,BD:AB=3:2,则AC=2k,AB=k,BD=k,∴CD=k-k=k,∵CD=11,∴k=11,∴k=22,∴AB=22;∴综上所述,AB=6或22.【点睛】本题考查了两点间的距离,线段的数量关系,以及一元一次方程的应用,分类讨论是解答本题的关键.4、①③④【解析】【分析】根据多项式的次数的含义可判断A,根据角平分线的定义可判断B,根据绝对值的含义与数轴上两点之间的距离可判断C,由一元一次方程的定义与一元一次方程的解法可判断D,从而可得答案.【详解】解:多项式的次数为3,故①符合题意;如图,,但OP不平分∠AOB;故②不符合题意,如图,当时,满足的整数x的值有,有5个;故③符合题意; , 为关于x的一元一次方程,则 ,故④符合题意;综上:符合题意的有①③④故答案为:①③④【点睛】本题考查的是多项式的次数,角平分线的定义,绝对值的含义,数轴上两点之间的距离,一元一次方程的定义及解一元一次方程,掌握以上基础知识是解本题的关键.5、7【解析】【分析】由,得出的长度, ,从而得出CD的长度【详解】,故答案为7【点睛】本题主要考查线段的和与差及线段两点间的距离,熟练运用线段的和与差计算方法进行求解是解决本题的关键.三、解答题1、 (1)见解析(2)3或1【解析】【分析】先根据射线的定义,画出射线AP,然后分两种情况:当点C位于点B右侧时,当点C位于点B左侧时,即可求解;(2)根据M,N分别为AB,BC的中点,可得 ,即可求解.(1)解:根据题意画出图形, 当点C位于点B右侧时,如下图:射线AP、线段AB、线段BC即为所求;当点C位于点B左侧时,如下图:(2)解: ∵M,N分别为AB,BC的中点,∴ ,∵a=4,b=2,∴ ,当点C位于点B右侧时,MN=BM+BN=3;当点C位于点B左侧时,MN=BM-BN=1;综上所述,线段MN的长为3或1.【点睛】本题主要考查了射线的定义,尺规作图——作一条线段等于已知线段,有关中点的计算,熟练掌握射线是只有一个端点,它从一个端点向另一边无限延长不可测量长度的线;作一条线段等于已知线段的作法是解题的关键.2、80°【解析】【分析】设∠BOE为x°,则∠DOB=55°-x°,∠EOC=2x°,然后根据角平分线定义列方程解决求出∠BOE,可得∠EOC.【详解】解:设∠BOE=x°,则∠DOB=55°﹣x°, 由∠BOE=∠EOC可得∠EOC=2x°,由OD平分∠AOB,得∠AOB=2∠DOB,故有2x+x+2(55﹣x)=150,解方程得x=40,故∠EOC=2x=80°.【点睛】本题主要考查了角平分线的定义以及角的计算,根据角平分线的性质和已知条件列方程求解.方程思想是解决问题的基本思考方法.3、BP=4cm,AB=10cm【解析】【分析】设AP=3xcm,BP=2xcm,由AP=6cm,求出x=2,即可得到答案.【详解】解:∵AP与PB的长度之比为3∶2,∴设AP=3xcm,BP=2xcm,又∵AP=6cm,∴3x=6,x=2,∴BP=4cm,AB=10cm.【点睛】此题考查了线段的和差计算,根据AP与PB的长度之比为3∶2设未知数是解题的固定思路,注意此方法的积累,在角度计算,应用题中同样可以应用.4、 (1)(2)①;②【解析】【分析】(1)根据OB平分∠COE,得出∠COB=∠EOB,根据∠AOB=90°,得出∠BOC+∠AOC =90°,∠BOE+∠AOD =90°,利用等角的余角性质得出∠AOC=∠AOD即可;(2)①存在,根据,得出∠COE=180°-∠COD=180°-120°=60°,当OB平分∠COE时,直角边在射线 上,∠EOB=∠BOC=,列方程15°t=30°,解得t=2;当OC平分∠EOB时,∠BOC=∠EOC=60°,∠EOB=2∠EOC=120°>90°,∠EOB不是锐角舍去,当OE平分∠BOC时,∠EOB=∠EOC=60°,∠BOC=2∠EOC=120°>90°∠BOC不是锐角舍去即可;②如图根据∠COD=120°,可得AB与OD相交时,∠BOC=∠COD-∠BOD=120°-∠BOD,∠AOD=∠AOB-∠BOD=90°-∠BOD,代入计算即可.(1)解:∵OB平分∠COE,∴∠COB=∠EOB,∵∠AOB=90°,∴∠BOC+∠AOC =90°,∠BOE+∠AOD =90°,∴∠AOC=∠AOD,故答案为:∠AOC=∠AOD;(2)解:①存在,∵,∴∠COE=180°-∠COD=180°-120°=60°,当OB平分∠COE时,直角边在射线 上,∠EOB=∠BOC=,则15°t=30°,∴t=2;当OC平分∠EOB时,∠BOC=∠EOC=60°,∴∠EOB=2∠EOC=120°>90°,∴当OC平分∠EOB时,∠EOB不是锐角舍去,当OE平分∠BOC时,∠EOB=∠EOC=60°,∴∠BOC=2∠EOC=120°>90°,当OE平分∠BOC时,∠BOC不是锐角舍去,综上,所有满足题意的t的取值为2,②如图∵∠COD=120°,当AB与OD相交时,∵∠BOC=∠COD-∠BOD=120°-∠BOD,∠AOD=∠AOB-∠BOD=90°-∠BOD,∴,故答案为:30°.【点睛】本题考查角平分线定义,三角板中角度计算,图形旋转,角的和差计算,熟练掌握角平分线的性质,分类讨论的思想运用是解答的关键.5、 (1)∠AOC=40°,∠BOC=80°(2)40°(3)∠COD的度数为32°或176°【解析】【分析】(1)根据∠AOC:∠BOC=1:2,即可求解;(2)先求出∠COM,再求出∠CON,相加即可求解;(3)分OD在∠AOB内部和外部两种情况分类讨论即可求解.【小题1】解:∵∠AOC:∠BOC=1:2,∠AOB=120°,∴∠AOC=∠AOB=×120°=40°,∠BOC=∠AOB=×120°=80°;【小题2】∵OM平分∠AOC,∴∠COM=∠AOC=×40°=20°,∵∠CON:∠BON=1:3,∴∠CON=∠BOC=×80°=20°,∴∠MON=∠COM+∠CON=20°+20°=40°;【小题3】如图,当OD在∠AOB内部时,设∠BOD=x°,∵2∠AOD=3∠BOD,∴∠AOD=,∵∠AOB=120°,∴x+=120,解得:x=48,∴∠BOD=48°,∴∠COD=∠BOC-∠BOD=80°-48°=32°,如图,当OD在∠AOB外部时,设∠BOD=y°,∵2∠AOD=3∠BOD,∴∠AOD=,∵∠AOB=120°,∴+y+120°=360°解得:y=96°,∴∠COD=∠BOD+∠BOC=96°+80°=176°,综上所述,∠COD的度数为32°或176°.【点睛】本题考查了角的计算及角平分线,掌握角的特点及比例的意义是解决问题的关键.
相关试卷
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂检测题,共21页。试卷主要包含了在下列生活,如图,OM平分,,,则等内容,欢迎下载使用。
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试练习,共24页。
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试综合训练题,共19页。试卷主要包含了已知线段AB,若的补角是,则的余角是,如图所示,B,下列现象等内容,欢迎下载使用。