![达标测试鲁教版(五四制)六年级数学下册第五章基本平面图形定向测评试题(含答案解析)01](http://img-preview.51jiaoxi.com/2/3/12734202/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![达标测试鲁教版(五四制)六年级数学下册第五章基本平面图形定向测评试题(含答案解析)02](http://img-preview.51jiaoxi.com/2/3/12734202/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![达标测试鲁教版(五四制)六年级数学下册第五章基本平面图形定向测评试题(含答案解析)03](http://img-preview.51jiaoxi.com/2/3/12734202/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试随堂练习题
展开六年级数学下册第五章基本平面图形定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法正确的是( )
A.锐角的补角不一定是钝角 B.一个角的补角一定大于这个角
C.直角和它的的补角相等 D.锐角和钝角互补
2、下列说法错误的是( )
A.两点之间,线段最短
B.经过两点有一条直线,并且只有一条直线
C.延长线段AB和延长线段BA的含义是相同的
D.射线AB和射线BA不是同一条射线
3、如图,线段,延长到点,使,若点是线段的中点,则线段的长为( )
A. B. C. D.
4、下列图形中,能用,,三种方法表示同一个角的是( )
A. B.
C. D.
5、芳芳放学从校门向东走400米,再往北走200米到家;丽丽出校门向东走200米到家,则丽丽家在芳芳家的( )
A.东南方向 B.西南方向 C.东北方向 D.西北方向
6、校园中常常看到“在草坪上斜踩出一条小路”,请用数学知识解释图中这一不文明现象,其原因为( )
A.直线外一点与直线上点之间的连线段有无数条 B.过一点有无数条直线
C.两点确定一条直线 D.两点之间线段最短
7、①线段,AB的中点为D,则;②射线;③OB是的平分线,,则;④把一个周角6等分,每份是60°.以上结论正确的有( )
A.②③ B.①④ C.①③④ D.①②③
8、如图,某同学从处出发,去位于处的同学家交流学习,其最近的路线是( )
A. B.
C. D.
9、延长线段AB到C,使得BC=3AB,取线段AC的中点D,则下列结论:①点B是线段AD的中点.②BD=CD,③AB=CD,④BC﹣AD=AB.其中正确的是( )
A.①②③ B.①②④ C.①③④ D.②③④
10、在9:30这一时刻,时钟上的时针和分针之间的夹角为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,将三个形状、大小完全一样的正方形的一个顶点重合放置,若,,则_____.
2、如图,在平面内有A,B,C三点.请画直线AC,线段BC,射线AB,数数看,此时图中共有 个钝角.
3、一个圆的周长是31.4cm,它的半径是_____cm,面积是_____cm2.
4、已知∠1与∠2互余,∠2与∠3互补,若∠1=33°27',则∠2=_____,∠3=_____.
5、如图已知,线段,,为线段的中点,那么线段_________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知∠AOB=150°,∠AOC=30°,OE是∠AOB内部的一条射线,OF平分∠AOE,且OF在OC的右侧.
(1)若∠COF=25°,求∠EOB的度数;
(2)若∠COF=n°,求∠EOB的度数.(用含n的式子表示)
2、已知∠AOB=90°,∠COD=80°,OE是∠AOC的角平分线.
(1)如图1,若∠AOD=∠AOB,则∠DOE=________;
(2)如图2,若OF是∠AOD的角平分线,求∠AOE−∠DOF的值;
(3)在(1)的条件下,若射线OP从OE出发绕O点以每秒12°的速度逆时针旋转,射线OQ从OD出发绕O点以每秒8°的速度顺时针旋转,若射线OP、OQ同时开始旋转t秒(0<t<)后得到∠COP=∠AOQ,求t的值.
3、一副三角板按如图1所示放置,边在直线上,.
(1)求图1中的度数;
(2)如图2,将三角板绕点O顺时针旋转,转速为,同时将三角板绕点O逆时针旋转,转速为,当旋转到射线上时,两三角板都停止转动.设转动时间为.
①在范围内,当时,求t的值;
②如图3,旋转过程中,作的角平分线,当时.直接写出时间的值.
4、在数轴上,点A表示的数为1,点B表示的数为3.对于数轴上的图形M,给出如下定义:P为图形M上任意一点,Q为线段AB上任意一点,如果线段PQ的长度有最小值,那么称这个最小值为图形M关于线段AB的极小距离,记作d1(M,线段AB);如果线段PQ的长度有最大值,那么称这个最大值为图形M关于线段AB的极大距离,记作d2(M,线段AB).例如:点K表示的数为4,则d1(点K,线段AB)=1,d2(点K,线段AB)=3.
已知点O为数轴原点,点C,D为数轴上的动点.
(1)d1(点O,线段AB)= ,d2(点O,线段AB)= ;
(2)若点C,D表示的数分别为m,m+2,d1(线段CD,线段AB)=2.求m的值;
(3)点C从原点出发,以每秒2个单位长度沿x轴正方向匀速运动;点D从表示数﹣2的点出发,第1秒以每秒2个单位长度沿x轴正方向匀速运动,第2秒以每秒4个单位长度沿x轴负方向匀速运动,第3秒以每秒6个单位长度沿x轴正方向匀速运动,第4秒以每秒8个单位长度沿x轴负方向匀速运动,…,按此规律运动,C,D两点同时出发,设运动的时间为t秒,若d2(线段CD,线段AB)小于或等于6,直接写出t的取值范围.(t可以等于0)
5、如图,已知平面内有四个点A,B,C,D.
根据下列语句按要求画图.
(1)连接AB;作直线AD.
(2)作射线BC与直线AD交于点F.
观察图形发现,线段AF+BF>AB,得出这个结论的依据是: .
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据余角和补角的概念判断即可.
【详解】
解:A、因为锐角的补角与锐角之和为180°,所以锐角的补角一定是钝角,所以本说法不符合题意;
B、当这个角为120°时,120°的补角是60°,所以本说法不符合题意;
C、根据直角的补角是直角.所以本说法符合题意;
D、锐角和钝角的度数不确定,不能确定锐角和钝角是否互补,所以本说法不符合题意;
故选:C.
【点睛】
本题考查的是余角和补角的概,如果两个角的和等于90°,就说这两个角互为余角;如果两个角的和等于180°,就说这两个角互为补角.
2、C
【解析】
【分析】
根据两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义依次分析判断.
【详解】
解:A. 两点之间,线段最短,故该项不符合题意;
B. 经过两点有一条直线,并且只有一条直线,故该项不符合题意;
C. 延长线段AB和延长线段BA的含义是不同的,故该项符合题意;
D. 射线AB和射线BA不是同一条射线,故该项不符合题意;
故选:C.
【点睛】
此题考查了两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义,综合掌握各知识点是解题的关键.
3、B
【解析】
【分析】
先求出,再根据中点求出,即可求出的长.
【详解】
解:∵,
∴,,
∵点是线段的中点,
∴,
,
故选:B.
【点睛】
本题考查了线段中点有关的计算,解题关键是准确识图,理清题目中线段的关系.
4、A
【解析】
【分析】
根据角的表示的性质,对各个选项逐个分析,即可得到答案.
【详解】
A选项中,可用,,三种方法表示同一个角;
B选项中,能用表示,不能用表示;
C选项中,点A、O、B在一条直线上,
∴能用表示,不能用表示;
D选项中,能用表示,不能用表示;
故选:A.
【点睛】
本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.
5、B
【解析】
略
6、D
【解析】
【分析】
根据题意可知,原因为两点之间线段最短,据此分析即可
【详解】
解:校园中常常看到“在草坪上斜踩出一条小路”, 其原因为两点之间线段最短
故选D
【点睛】
本题考查了线段的性质,掌握两点之间线段最短是解题的关键.
7、B
【解析】
【分析】
分别根据中点的定义,射线的性质,角平分线的定义,周角的定义逐项判断即可求解.
【详解】
解:①线段,AB的中点为D,则,故原判断正确;
②射线没有长度,故原判断错误;
③OB是的平分线,,则,故原判断错误;
④把一个周角6等分,每份是60°,故原判断正确.
故选:B
【点睛】
本题考查了中点的定义,射线的理解,角平分线的性质,周角的定义等知识,熟知相关知识是解题关键.
8、B
【解析】
【分析】
根据两点之间线段最短,对四个选项中的路线作比较即可.
【详解】
解:四个选项均为从A→C然后去B
由两点之间线段最短可知,由C到B的连线是最短的
由于F在CB线上,故可知A→C→F→B是最近的路线
故选B.
【点睛】
本题考查了两点之间线段最短的应用.解题的关键在于正确理解两点之间线段最短.
9、B
【解析】
【分析】
先根据题意,画出图形,设 ,则 ,根据点D是线段AC的中点,可得 ,从而得到 ,BD=CD,AB=CD, ,即可求解.
【详解】
解:根据题意,画出图形,如图所示:
设 ,则 ,
∵点D是线段AC的中点,
∴ ,
∴ ,
∴AB=BD,即点B是线段AD的中点,故①正确;
∴BD=CD,故②正确;
∴AB=CD,故③错误;
∴ ,
∴BC﹣AD=AB,故④正确;
∴正确的有①②④.
故选:B
【点睛】
本题主要考查了考查了线段的和与差,有关中点的计算,能够用几何式子正确表示相关线段间的关系,利用数形结合思想解答是解题的关键.
10、A
【解析】
【分析】
根据时针与分针相距的份数乘以每份的度数,可得答案.
【详解】
解:9:30时针与分针相距3.5份,每份的度数是30°,
在时刻9:30,时钟上时针和分针之间的夹角(小于平角的角)为3.5×30°=105°.
故选:A.
【点睛】
本题考查了钟面角,利用时针与分针相距的份数乘以每份的度数是解题关键.
二、填空题
1、
【解析】
【分析】
首先求得和∠EAC,然后根据即可求解.
【详解】
解:∵将三个形状、大小完全一样的正方形的一个顶点重合放置,
∠GAD=∠EAB=90°,
,,
∴
∴
故答案为:
【点睛】
本题考查的是角的和差关系,角度的加法运算,掌握“角的和差关系与角度的加法运算”是解本题的关键.
2、见详解,3
【解析】
【分析】
直接根据直线、线段、射线的概念画出图形,再由角的概念解答即可.
【详解】
解:作图如下:
由图可得,图中共有3个钝角,
故答案为:3.
【点睛】
此题考查的是角的概念、直线、射线和线段,掌握有公共端点是两条射线组成的图形叫做角是解决此题关键.
3、 5 78.5
【解析】
【分析】
设圆的半径为.先利用圆的周长公式求出,再利用圆的面积公式即可得.
【详解】
解:设圆的半径为,
由题意得:,
解得,
则圆的面积为,
故答案为:5,78.5.
【点睛】
本题考查了圆的周长、面积等知识,解题的关键是记住圆的周长公式和面积公式.
4、
【解析】
【分析】
根据余角和补角的概念求出∠3,∠2与∠1的关系,把∠1的值代入计算即可.
【详解】
解:∵∠1与∠2互余,
∴∠2=90°﹣∠1,
∵∠1=33°27',
∠2=90°﹣
∵∠2与∠3互补,
∴∠3=180°﹣∠2=180°﹣(90°﹣∠1)=90°+∠1,
∵∠1=,
∴∠3=,
故答案为:,.
【点睛】
本题考查了角的计算问题,掌握互余与互补的定义是解题的关键.
5、6
【解析】
【分析】
根据为线段的中点,可得,即可求解.
【详解】
解:为线段的中点,
,
.
故答案为:6
【点睛】
本题主要考查了有关中点的计算,熟练掌握把一条线段分成相等的两段的点,叫做这条线段的中点是解题的关键.
三、解答题
1、 (1)
(2)
【解析】
【分析】
(1)求出,再由角平分线计算求出,结合图形即可求出;
(2)求出,再由角平分线计算求出,结合图形即可求出.
(1)
∵,,
∴,
∵OF平分,
∴,
∵,
∴;
(2)
∵,,
∴,
∵OF平分,
∴,
∵,
∴.
【点睛】
题目主要考查利用角平分线进行角度间的计算,理解题意,找准各角之间的数量关系是解题关键.
2、 (1)25°
(2)∠AOE-∠DOF=40°
(3)t的值为秒或秒
【解析】
【分析】
(1)由题意得∠AOD=30°,再求出∠AOE=55°,即可得出答案;
(2)先由角平分线定义得∠AOF=∠DOF=∠AOD,∠AOE=∠AOC,再证∠AOE-∠AOF=∠COD,即可得出答案;
(3)分三种情况:①当射线OP、OQ在∠AOC内部时,②当射线OP在∠AOC内部时,射线OQ在∠AOC外部时,③当射线OP、OQ在∠AOC外部时,由角的关系,列方程即可求解.
(1)
解:(1)∵∠AOB=90°,
∴∠AOD=∠AOB=30°,
∵∠COD=80°,
∴∠AOC=∠AOD+∠COD=30°+80°=110°,
∵OE平分∠AOC,
∴∠AOE=∠COE=∠AOC=55°,
∴∠DOE=∠AOE-∠AOD=55°-30°=25°;
(2)
解:∵OF平分∠AOD,
∴∠AOF=∠DOF=∠AOD,
∵OE平分∠AOC,
∴∠AOE=∠AOC,
∴∠AOE-∠AOF=∠AOC-∠AOD=(∠AOC-∠AOD)=∠COD,
又∵∠COD=80°,
∴∠AOE-∠DOF=×80°=40°;
(3)
解:分三种情况:
①当射线OP、OQ在∠AOC内部时,即0<t≤时,
由题意得:∠POE=(12t)°,∠DOQ=(8t)°,
∴∠COP=∠COE-∠POE=(55-12t)°,∠AOQ=∠AOD-∠DOQ=(30-8t)°,
∵∠COP=∠AOQ,
∴55-12t=(30-8t),
解得:t=(舍去);
②当射线OP在∠AOC内部时,射线OQ在∠AOC外部时,即<t≤时,
则∠COP=∠COE-∠POE=(55-12t)°,∠AOQ=∠DOQ-∠AOD=(8t-30)°,
∴55-12t=(8t-30),
解得:t=;
③当射线OP、OQ在∠AOC外部时,即<t<时,
则∠COP=∠POE-∠COE=(12t-55)°,∠AOQ=∠DOQ-∠AOD=(8t-30)°,
∴12t-55=(8t-30),
解得:t=;
综上所述,t的值为秒或秒.
【点睛】
本题考查了角的计算、角的和差、角平分线的定义等知识,正确的识别图形是解题的关键.
3、 (1)
(2)①2s;②s或s或s.
【解析】
【分析】
(1)利用角的和差关系可得从而可得答案;
(2)①先求解重合的时间,再画出图形,结合几何图形与角的和差关系列方程,再解方程即可;②分情况讨论:当时,结合①可得 当时, 当时,利用角的和差关系列方程 解方程即可,当时,如图,当 利用角的和差关系列方程 再解方程即可,当时, 当时,利用角的和差关系列方程,再解方程即可,从而可得答案.
(1)
解: ,
(2)
解:① 则重合时的时间为:(s),
当时,
解得:
所以当旋转2s时,
②当旋转到射线上时,(s),
当时,结合①可得
当重合时,(s),重合时,(s),如图,
所以当时,
当重合时,(s),如图,
当时,
平分
解得:
当重合时,(s),
当时,如图,
平分
解得: 不符合题意,舍去,
当重合时,(s),
当
平分
解得:
如图,当再次重合时,(s),
当时,
如图,当重合时,(s)
当时,
平分
解得:
综上:当时,s或s或s.
【点睛】
本题考查的是几何图形中角的和差关系,角的动态定义的理解,一元一次方程的应用,“数形结合与利用一元一次方程解决动态几何问题”是解本题的关键.
4、 (1)1,3
(2)﹣3或5
(3)或
【解析】
【分析】
(1)根据定义即可求得答案;
(2)由题意易得CD=2,然后分两种情况讨论m的值,即当CD在AB的左侧时和当CD在AB的右侧时;
(3)由题意可分当t=0时,点C表示的数为0,点D表示的数为﹣2,当0<t≤1时,点C表示的数为2t,点D表示的数为﹣2+2t,当1<t≤2时,点C表示的数为2t,点D表示的数为﹣4t+4,当2<t≤3时,点C表示的数为2t,点D表示的数为6t﹣16,当3<t≤4时,点C表示的数为2t,点D表示的数为﹣8t+26,当t=5时,点C表示的数为10,点D表示的数为4,当4<t≤5时,点C表示的数为2t(8<2t≤10),点D表示的数为10t﹣46,进而问题可求解.
(1)
解:d1(点O,线段AB)=OA=1﹣0=1,d2(点O,线段AB)=OB=3﹣0=3,
故答案为:1,3;
(2)
解:∵点C,D表示的数分别为m,m+2,
∴点D在点C的右侧,CD=2,
当CD在AB的左侧时,d1(线段CD,线段AB)=DA=1﹣(m+2)=2,
解得:m=﹣3,
当CD在AB的右侧时,d1(线段CD,线段AB)=BC=m﹣3=2,
解得:m=5,
综上所述,m的值为﹣3或5;
(3)
解:当t=0时,点C表示的数为0,点D表示的数为﹣2,则d2=5,
当0<t≤1时,点C表示的数为2t,点D表示的数为﹣2+2t,则d2=5﹣2t<6,
当1<t≤2时,点C表示的数为2t,点D表示的数为﹣4t+4,则d2=4t﹣1≤6,
解得:t≤,
当2<t≤3时,点C表示的数为2t,点D表示的数为6t﹣16,则d2=19﹣6t≤6,
解得:t≥,
当3<t≤4时,点C表示的数为2t,点D表示的数为﹣8t+26,则d2=8t﹣23≤6或2t﹣1≤6,
解得:t≤,
当t=5时,点C表示的数为10,点D表示的数为4,则d2=AC=10﹣1=9>6,
当4<t≤5时,点C表示的数为2t(8<2t≤10),点D表示的数为10t﹣46,(﹣6<10t﹣46≤4),
∴0≤BD≤9,7≤AC≤9,
∴d2>6,不符合题意,
综上所述,d2(线段CD,线段AB)小于或等于6时,0≤t≤或≤t≤.
【点睛】
本题考查了学生对新定义的理解及分类讨论的应用,正确理解定义及准确的分类是解决本题的关键.
5、 (1)见解析;
(2)见解析,两点之间线段最短
【解析】
【分析】
(1)根据线段、直线的定义即可画出图形;
(2)根据射线的定义,可画出射线BC,再根据两点之间线段最短解决问题.
(1)
如图所示,线段AB与直线AD即为所求;
(2)
如上图所示,射线BC即为所求,
根据两点之间线段最短得AF+BF>AB,
故答案为:两点之间线段最短.
【点睛】
本题考查了画线段、直线、射线;两点之间线段最短,掌握线段、射线、直线的特点是解题的关键.
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时练习: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时练习,共24页。试卷主要包含了下列两个生活,下列各角中,为锐角的是,如图所示,点E等内容,欢迎下载使用。
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试达标测试: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试达标测试,共27页。试卷主要包含了如图所示,由A到B有①,上午8,下列说法中正确的是,下列命题中,正确的有等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时训练: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时训练,共21页。试卷主要包含了如果A,下列命题中,正确的有等内容,欢迎下载使用。