初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题
展开七年级数学第二学期第十五章平面直角坐标系专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若点P(m,1)在第二象限内,则点Q(1﹣m,﹣1)在( )
A.第四象限 B.第三象限 C.第二象限 D.第一象限
2、点A关于y轴的对称点A1坐标是(2,-1),则点A关于轴的对称点A2坐标是( )
A.(-1,-2) B.(-2,1) C.(2,1) D.(2,-1)
3、在平面直角坐标系xOy中,点A(2,3)关于原点对称的点的坐标是( )
A.(2,-3) B.(-2,3) C.(3,2) D.(-2,-3)
4、如图,是由ABO平移得到的,点A的坐标为(-1,2),它的对应点的坐标为(3,4),ABO内任意点P(a,b)平移后的对应点的坐标为( )
A.(a,b) B.(-a,-b) C.(a+2,b+4) D.(a+4,b+2)
5、在平面直角坐标系中,点的坐标是,点与点关于轴对称,则点的坐标是( )
A. B. C. D.
6、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为( )
A.-1008 B.-1010 C.1012 D.-1012
7、平面直角坐标系内与点P关于原点对称的点的坐标是( )
A. B. C. D.
8、在平面直角坐标系中,点P(2,5)关于y轴对称的点的坐标为( )
A.(2,﹣5) B.(﹣2,﹣5) C.(﹣2,5) D.(﹣5,2)
9、点(a,﹣3)关于原点的对称点是(2,﹣b),则a+b=( )
A.5 B.﹣5 C.1 D.﹣1
10、点向上平移2个单位后与点关于y轴对称,则( ).
A.1 B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知点A(a﹣1,5)与点B(﹣3,b)关于x轴对称,则点C(a,b)关于y轴对称的点在第 _____象限.
2、若点在y轴上,则m=_____.
3、在平面直角坐标系中,将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是___________.
4、已知点P(3,1)关于y轴的对称点Q的坐标为 _____.
5、若点关于原点的对称点是,则______.
三、解答题(10小题,每小题5分,共计50分)
1、如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2).
(1)画出△ABC关于y轴对称的图形△A1B1C1;
(2)如果点D(a,b)在线段AB上,请直接写出经过(1)的变化后D的对应点D1的坐标;
(3)请计算出的面积.
2、如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(1,3).
(1)请按下列要求画图:
①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;
②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.
(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请写出对称中心M点的坐标 .
3、已知:如图,在平面直角坐标系中.
(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标:A1( ),B1( ),C1( );
(2)直接写出△ABC的面积为 ;
(3)在x轴上画点P,使PA+PC最小.
4、如图,三角形的项点坐标分别为,,.
(1)画出三角形关于点的中心对称的,并写出点的坐标;
(2)画出三角形绕点顺时针旋转90°后的,并写出点的坐标.
5、如图,在平面直角坐标系中,已知的三个顶点的坐标分别为、、.
(1)画出将关于点对称的图形;
(2)写出点、、的坐标.
6、如图所示,在平面直角坐标系中,已知,,.
(1)在平面直角坐标系中画出,并求出的面积;
(2)在(1)的条件下,把先关于y轴对称得到,再向下平移3个单位得到,则中的坐标分别为( ),( ),( );(直接写出坐标)
(3)已知为轴上一点,若的面积为4,求点的坐标.
7、如图,已知△ABC各顶点的坐标分别为A(-3,2),B(-4,-3),C(-1,-1).
(1)请在图中画出△ABC关于y轴对称的△A1B1C1,
(2)并写出△A1B1C1的各点坐标.
8、如图,三个顶点的坐标分别是.
(1)请画出关于x轴对称的图形;
(2)求的面积;
(3)在x轴上求一点P,使周长最小,请画出,并通过画图求出P点的坐标.
9、如图,在平面直角坐标系中,的三个顶点均在格点上.
(1)在网格中作出关于轴对称的图形;
(2)直接写出以下各点的坐标:________,________,________;
(3)网格的单位长度为1.则________.
10、如图,在平面直角坐标系中,点B的坐标是,点C的坐标为,CB交x轴负半轴于点A,过点B作射线,作射线CD交BM于点D,且
(1)求证:点A为线段BC的中点.
(2)求点D的坐标.
-参考答案-
一、单选题
1、A
【分析】
直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案.
【详解】
∵点P(m,1)在第二象限内,
∴m<0,
∴1﹣m>0,
则点Q(1﹣m,﹣1)在第四象限.
故选:A.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
2、B
【分析】
由题意由对称性先求出A点坐标,再根据对称性求出点关于轴的对称点坐标.
【详解】
解:由点关于轴的对称点坐标是,可知A为,则点关于轴的对称点坐标是.
故选B.
【点睛】
本题考查对称性,利用点关于轴对称,横轴坐标变为相反数,纵轴坐标不变以及点关于轴对称,纵轴坐标变为相反数,横轴坐标不变进行分析.
3、D
【分析】
根据“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”即可求得.
【详解】
解:点A(2,3)关于原点对称的点的坐标是
故选D
【点睛】
本题考查了关于原点对称的点的坐标特征,掌握“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”是解题的关键.
4、D
【分析】
根据点A的坐标和点的坐标确定平移规律,即可求出点P(a,b)平移后的对应点的坐标.
【详解】
解:∵△A′B′O′是由△ABO平移得到的,点A的坐标为(-1,2),它的对应点A′的坐标为(3,4),
∴△ABO平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,
∴△ABO内任意点P(a,b)平移后的对应点P′的坐标为(a+4,b+2).
故选:D.
【点睛】
此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律.点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小.
5、C
【分析】
根据关于轴对称的点坐标的特征:纵坐标不变,横坐标互为相反数,即可求解.
【详解】
解:点的坐标是,点与点关于轴对称,
的坐标为,
故选:C.
【点睛】
本题主要是考查了关于轴对称的点坐标的特征,熟练掌握关于坐标轴对称的点的特征,是解决该类问题的关键.
6、C
【分析】
首先确定角码的变化规律,利用规律确定答案即可.
【详解】
解:∵各三角形都是等腰直角三角形,
∴直角顶点的纵坐标的长度为斜边的一半,
A3(0,0),A7(2,0),A11(4,0)…,
∵2021÷4=505余1,
∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,
∴A2021的坐标为(1012,0).
故选:C
【点睛】
本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.
7、C
【分析】
根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可.
【详解】
解:由题意,得
点P(-2,3)关于原点对称的点的坐标是(2,-3),
故选:C.
【点睛】
本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
8、C
【分析】
关于轴对称的两个点的坐标特点:横坐标互为相反数,纵坐标不变,根据原理直接可得答案.
【详解】
解:点P(2,5)关于y轴对称的点的坐标为:
故选:C
【点睛】
本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标互为相反数,纵坐标不变”是解本题的关键.
9、B
【分析】
根据关于原点对称的点的坐标特证构造方程-b=3,a=−2,再解方程即可得到a、b的值,进而可算出答案.
【详解】
解:∵点(a,﹣3)关于原点的对称点是(2,﹣b),
∴−b=3,a=−2,
解得:b=-3,a=−2,
则,
故选择B.
【点睛】
本题主要考查了关于原点对称的点的坐标:掌握关于原点对称的特征,两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(−x,−y).关键是利用对称性质构造方程.
10、D
【分析】
利用平移及关于y轴对称点的性质即可求解.
【详解】
解:把向上平移2个单位后得到点 ,
∵点与点关于y轴对称,
∴ , ,
∴ ,
∴,
故选:D.
【点睛】
本题考查坐标与图形变化平移、轴对称的性质及负整数指数幂,解题关键是掌握平移、轴对称的性质及负整数指数幂.
二、填空题
1、四
【分析】
直接利用关于x,y轴对称点的性质得出a,b的值,进而得出答案.
【详解】
解:∵点A(a﹣1,5)与点B(﹣3,b)关于x轴对称,
∴a﹣1=﹣3,b=﹣5,
解得:a=﹣2,b=﹣5,
∴点C(a,b)为C(﹣2,﹣5),
∴点C(a,b)关于y轴对称的点的坐标为(2,﹣5),
即点C(a,b)关于y轴对称的点在第四象限.
故答案为:四.
【点睛】
本题考查了求关于坐标轴对称的点的坐标,判断点所在的象限,求得的值是解题的关键.
2、-4
【分析】
在轴上点的坐标,横坐标为,可知,进而得到的值.
【详解】
解:在轴上
故答案为:.
【点睛】
本题考察了坐标轴上点坐标的特征.解题的关键在于理解轴上点坐标的形式.在轴上点的坐标,横坐标为;在轴上点的坐标,纵坐标为.
3、
【分析】
绕坐标原点顺时针旋转即关于原点中心对称,找到关于原点中心对称的点的坐标即可,根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.
【详解】
解:将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是
故答案为:
【点睛】
本题考查了求一个点关于原点中心对称的点的坐标,掌握关于原点中心对称的点的坐标特征是解题的关键.关于原点对称的两个点,横坐标、纵坐标分别互为相反数.
4、(﹣3,1)
【分析】
点关于y轴的对称点坐标,横坐标为相反数,纵坐标不变;可以得到对称点Q的坐标.
【详解】
解:点P(3,1)关于y轴的对称点Q的坐标为(﹣3,1).
故答案为:(﹣3,1).
【点睛】
本题考察坐标系中点的对称.解题的关键在于明确点在对称时坐标的变化形式.
5、
【分析】
根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.
【详解】
解:由关于坐标原点的对称点为,得,
,
解得:
故答案为:.
【点睛】
本题考查了关于原点的对称的点的坐标,解题的关键是掌握关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
三、解答题
1、(1)见解析;(2)(-a,b);(3)2
【分析】
(1)分别作出点A、B、C关于y轴的对称点,再顺次连接即可得;
(2)根据(1)中规律即可得出答案;
(3)用割补法可求△ABC的面积.
【详解】
解:(1)△A1B1C1如图所示:
(2)∵D点的坐标为(a,b),
∴D1点的坐标为(-a,b);
(3).
【点睛】
本题考查作图-轴对称变换,三角形的面积等知识,解题的关键是掌握轴对称变换的性质,学会有分割法求三角形面积.关于y轴对称点的性质:纵坐标相同,横坐标互为相反数.
2、(1)①见解析;②见解析;(2)M(2,1)
【分析】
(1)①利用平移变换的性质分别作出A,B,C的对应点A1,B1,C1即可;
②利用中心对称的性质分别作出A,B,C的对应点A2,B2,C2即可;
(3)对应点连线的交点M即为所求.
【详解】
解:(1)①如图,△A1B1C1即为所求;
②如图,△A2B2C2即为所求;
(2)如图,点M即为所求,M(2,1),
故答案为:(2,1).
【点睛】
本题考查作图−旋转变换,平移变换等知识,解题的关键是掌握旋转变换,平移变换的性质,属于中考常考题型.
3、(1)作图见解析,(0,﹣2),(﹣2,﹣4),(﹣4,﹣1);(2)5;(3)见解析
【分析】
(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;
(2)直接利用△ABC所在长方形面积减去周围三角形面积进而得出答案;
(3)先确定A关于轴的对称点,再连接交轴于则此时满足要求.
【详解】
解:(1)如图所示:△A1B1C1即为所求,
A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);
故答案为:(0,﹣2),(﹣2,﹣4),(﹣4,﹣1);
(2)△ABC的面积为:12﹣×1×4﹣×2×2﹣×2×3=5;
故答案为:5;
(3)如图所示:点P即为所求.
【点睛】
本题考查的是轴对称的作图,坐标与图形,掌握“利用轴对称确定线段和取最小值时点的位置”是解本题的关键.
4、(1)图见解析,;(2)图见解析,
【分析】
(1)写出,,关于原点对称的点,,,连接即可;
(2)连接OC,OB,根据旋转的90°可得,,,,,即可;
【详解】
(1),,关于原点对称的点,,,作图如下;
(2)连接OC,OB,根据旋转的90°可得,,,,,,其中点C2的坐标是(3,-1),作图如下:
【点睛】
本题主要考查了平面直角坐标系中图形的旋转,作关于原点对称的图形,准确分析作图是解题的关键.
5、(1)见解析;(2),,.
【分析】
(1)直接利用关于点O对称的性质得出对应点位置,顺次连接各个对应点,即可;
(2)根据对应点位置直接写出坐标,即可.
【详解】
解:(1)如图所示,
(2),,.
【点睛】
本题考查了利用中心对称变换在坐标系中作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
6、(1)见解析,4;(2)0,-2,-2,-3,-4,0;(3)或.
【分析】
(1)先画出△ABC,然后再利用割补法求△ABC得面积即可;
(2)先作出,然后结合图形确定所求点的坐标即可;
(3)先求出PB的长,然后分P在B的左侧和右侧两种情况解答即可.
【详解】
解:(1)画出如图所示:
的面积是:;
(2)作出如图所示,则(0,-2),( -2,-3),(-4,0)
故填:0,-2,-2,-3,-4,0;
(3)∵P为x轴上一点,的面积为4,
∴,
∴当P在B的右侧时,横坐标为:
当P在B的左侧时,横坐标为,
故P点坐标为:或.
【点睛】
本题主要考查了轴对称、三角形的平移、三角形的面积以及平面直角坐标系中点的坐标等知识点,根据题意画出图形成为解答本题的关键.
7、(1)见解析;(2)A1(3,2),B1(4,-3),C1(1,-1).
【分析】
(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可;
(2)根据所作图形可得答案.
【详解】
解:(1)如图所示,△A1B1C1即为所求作.
(2)由图可知,A1(3,2),B1(4,-3),C1(1,-1).
【点睛】
本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点.注意:关于x轴对称的点,横坐标相同,纵坐标互为相反数.
8、(1)见解析;(2)3.5;(3)图形见解析,P点的坐标为
【分析】
(1)找到关于轴对称的点,顺次连接,则即为所求;
(2)根据网格的特点,根据即可求得的面积;
(3)连接,与轴交于点,根据对称性即可求得,点即为所求.
【详解】
解:(1)找到关于轴对称的点,顺次连接,则即为所求,如图
(2)
(3)根据作图可知,P点的坐标为
【点睛】
本题考查了画轴对称图形,坐标与图形,轴对称的性质求线段和的最小值,掌握轴对称的性质是解题的关键.
9、(1)见解析;(2);; ;(3)5
【分析】
(1)利用轴对称的性质分别作出A,B,C的对应点A1,B1,C1即可;
(2)根据点的位置写出坐标即可;
(3)把三角形的面积看成矩形面积减去周围三个三角形面积即可.
【详解】
解:(1)如图,△A1B1C1即为所求;
(2)A1(3,4),B1(5,2),C1(2,0).
故答案为:(3,4),(5,2),(2,0);
(3)网格的单位长度为1,则=3×4-×2×3-×2×2-×1×4=5,
故答案为:5.
【点睛】
本题考查轴对称,三角形的面积等知识,解题的关键是掌握轴对称的性质,学会利用分割法求三角形面积.
10、(1)证明见解析,(2)(8,2).
【分析】
(1)过点C作CQ⊥OA于Q,证△CQA≌△BOA,即可证明点A为线段BC的中点;
(2)过点C作CR⊥OB于R,过点D作DS⊥OB于S,证△CRB≌△BSD,根据全等三角形对应边相等即可求点D的坐标.
【详解】
(1)证明:过点C作CQ⊥OA于Q,
∵点B的坐标是,点C的坐标为,
∴CQ=OB=4,
∵∠CQO=∠BOA=90°,∠CAQ=∠BAO,
∴△CQA≌△BOA,
∴CA=AB,
∴点A为线段BC的中点.
(2)过点C作CR⊥OB于R,过点D作DS⊥OB于S,
∵,
∴∠CRB=∠DSB=∠CBD=90°,
∴∠CBR+∠SBD=90°,∠SDB+∠SBD=90°,
∴∠CBR=∠SDB,
∵,
∴∠BCD=∠BDC=45°,
∴CB=DB,
∴△CRB≌△BSD,
∴CR=SB,RB=DS,
∵点B的坐标是,点C的坐标为,
∴CR=SB=6,RB=DS=8,
∴OS=SB-OB=2,
点D的坐标为(8,2).
【点睛】
本题考查了全等三角形的判定与性质和点的坐标,解题关键是树立数形结合思想,恰当作辅助线,构建全等三角形.
初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时训练: 这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时训练,共26页。试卷主要包含了点P关于原点对称的点的坐标是,在平面直角坐标系中,点A,已知点A等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步达标检测题: 这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步达标检测题,共27页。试卷主要包含了如果点P,点P在第二象限内,P点到x,点P关于y轴对称点的坐标是.,在平面直角坐标系中,点P等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练: 这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练,共32页。试卷主要包含了一只跳蚤在第一象限及x轴等内容,欢迎下载使用。

