终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新沪教版七年级数学第二学期第十五章平面直角坐标系综合练习试卷(精选含详解)

    立即下载
    加入资料篮
    2021-2022学年最新沪教版七年级数学第二学期第十五章平面直角坐标系综合练习试卷(精选含详解)第1页
    2021-2022学年最新沪教版七年级数学第二学期第十五章平面直角坐标系综合练习试卷(精选含详解)第2页
    2021-2022学年最新沪教版七年级数学第二学期第十五章平面直角坐标系综合练习试卷(精选含详解)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步练习题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步练习题,共31页。试卷主要包含了点P在第二象限内,P点到x,已知A,已知点M等内容,欢迎下载使用。
    七年级数学第二学期第十五章平面直角坐标系综合练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则( )
    A.m=3,n=2 B.m=,n=2 C.m=2,n=3 D.m=,n=
    2、如果点P(m,n)是第三象限内的点,则点Q(-n,0)在( )
    A.x轴正半轴上 B.x轴负半轴上 C.y轴正半轴上 D.y轴负半轴上
    3、已知点A(﹣2,a)和点B(2,﹣3)关于原点对称,则a的值为( )
    A.2 B.﹣2 C.3 D.﹣3
    4、点P在第二象限内,P点到x、y轴的距离分别是4、3,则点P的坐标为(  )
    A.(-4,3) B.(-3,-4) C.(-3,4) D.(3,-4)
    5、如图在平面直角坐标系中,点N与点F关于原点O对称,点F的坐标是(3,2),则点N的坐标是( )

    A.(﹣3,﹣2) B.(﹣3,2) C.(﹣2,3) D.(2,3)
    6、如图,在平面直角坐标系中,已知“蝴蝶”上有两点,,将该“蝴蝶”经过平移后点的对应点为,则点的对应点的坐标为( )

    A. B. C. D.
    7、若在第一象限的ABC关于某条直线对称后的DEF在第四象限,则这条直线可以是(  )
    A.直线x=﹣1 B.x轴 C.y轴 D.直线x=
    8、已知A(3,﹣2),B(1,0),把线段AB平移至线段CD,其中点A、B分别对应点C、D,若C(5,x),D(y,0),则x+y的值是( )
    A.﹣1 B.0 C.1 D.2
    9、已知点M(m,﹣1)与点N(3,n)关于原点对称,则m+n的值为(  )
    A.3 B.2 C.﹣2 D.﹣3
    10、点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( )
    A.(-4,3) B.(4,-3) C.(-3,4) D.(3,-4)
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在平面直角坐标系中点M(2,﹣4)关于原点对称的点的坐标为 _____.
    2、已知点P(,)在x轴上,则_____.
    3、如图,边长为1的正六边形放置于平面直角坐标系中,边在轴正半轴上,顶点在轴正半轴上,将正六边形绕坐标原点顺时针旋转,每次旋转,那么经过第2022次旋转后,顶点的坐标为________.

    4、在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则a-b=________.
    5、点P(1,2)关于原点中心对称的点的坐标为_______.
    三、解答题(10小题,每小题5分,共计50分)
    1、如图,等腰直角△ABC中,BC=AC,∠ACB=90°,现将该三角形放置在平面直角坐标系中:
    (1)点B坐标为(0,2),点C坐标为(6,0),求点A的坐标;
    (2)点B坐标为(0,m),点C坐标为(n,0),连接OA,若P为坐标平面内异于点A的点,且以O、P、C为顶点的三角形与△OAC全等,请直接写出满足条件的点P的坐标(用含m,n的式子表示).

    2、在平面直角坐标系xOy中,对于任意图形G及直线l1,l2,给出如下定义:将图形G先沿直线l1翻折得到图形G1,再将图形G1沿直线l2翻折得到图形G2,则称图形G2是图形G的伴随图形.
    例如:点P(2,1)的伴随图形是点P'(-2,-1).
    (1)点Q(-3,-2)的伴随图形点Q'的坐标为 ;
    (2)已知A(t,1),B(t-3,1),C(t,3),直线m经过点(1,1).
    ①当t=-1,且直线m与y轴平行时,点A的伴随图形点A'的坐标为 ;
    ②当直线m经过原点时,若△ABC的伴随图形上只存在两个与x轴的距离为1的点,直接写出t的取值范围.
    3、在平面直角坐标系xOy中,点M(2,t-2)与点N关于过点(0,t)且垂直于y轴的直线对称.
    (1)当t =-3时,点N的坐标为 ;
    (2)以MN为底边作等腰三角形MNP.
    ①当t =1且直线MP经过原点O时,点P坐标为 ;
    ②若MNP上所有点到x轴的距离都不小于a(a是正实数),则t的取值范围是 (用含a的代数式表示)
    4、已知:如图,在平面直角坐标系中.
    (1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标:A1(   ),B1(   ),C1(   );
    (2)直接写出△ABC的面积为   ;
    (3)在x轴上画点P,使PA+PC最小.

    5、如图,在平面直角坐标内,点A的坐标为(-4,0),点C与点A关于y轴对称.
    (1)请在图中标出点A和点C;
    (2)△ABC的面积是 ;
    (3)在y轴上有一点D,且S△ACD=S△ABC,则点D的坐标为 .

    6、如图所示的方格纸中,每个小正方形的边长都是1个单位长度,三角形ABC的三个顶点都在小正方形的顶点上.
    (1)画出三角形ABC向左平移4个单位长度后的三角形DEF(点D、E、F与点A、B、C对应),并画出以点E为原点,DE所在直线为x轴,EF所在直线为y轴的平面直角坐标系;
    (2)在(1)的条件下,点D坐标(﹣3,0),将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点P、Q、M(点P、Q、M与点D、E、F对应),画出三角形PQM,并直接写出点P的坐标.

    7、在平面直角坐标系xOy中,直线l:x=m表示经过点(m,0),且平行于y轴的直线.给出如下定义:将点P关于x轴的对称点,称为点P的一次反射点;将点关于直线l的对称点,称为点P关于直线l的二次反射点.例如,如图,点M(3,2)的一次反射点为(3,-2),点M关于直线l:x=1的二次反射点为(-1,-2).
    已知点A(-1,-1),B(-3,1),C(3,3),D(1,-1).

    (1)点A的一次反射点为 ,点A关于直线:x=2的二次反射点为 ;
    (2)点B是点A关于直线:x=a的二次反射点,则a的值为 ;
    (3)设点A,B,C关于直线:x=t的二次反射点分别为,,,若△与△BCD无公共点,求t的取值范围.
    8、在平面直角坐标系xoy中,A,B,C如图所示:请用无刻度直尺作图(仅保留作图痕迹,无需证明).

    (1)如图1,在BC上找一点P,使∠BAP=45°;
    (2)如图2,作△ABC的高BH.
    9、如图所示的方格纸中,每个小方格的边长都是,点,,.
    (1)作关于轴对称的;
    (2)通过作图在轴上找出点,使最小,并直接写出点的坐标.

    10、如图是某地火车站及周围的简单平面图.(图中每个小正方形的边长代表1千米)

    (1)请以火车站所在的位置为坐标原点,以图中小正方形的边长为单位长度,建立平面直角坐标系,并写出体育场A、超市B、市场C、文化宫D的坐标;
    (2)在(1)中所建的坐标平面内,若学校E的位置是(﹣3,﹣3),请在图中标出学校E的位置.

    -参考答案-
    一、单选题
    1、B
    【分析】
    由题意直接根据关于y轴对称点的性质求出m和n的值,从而得解.
    【详解】
    解:∵点A(m,2)与点B(3,n)关于y轴对称,纵坐标相同,横坐标互为相反数.
    ∴m=-3,n=2.
    故答案为:B.
    【点睛】
    本题主要考查关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题的关键.
    2、A
    【分析】
    根据平面直角坐标系中象限的坐标特征可直接进行求解.
    【详解】
    解:∵点P(m,n)是第三象限内的点,
    ∴n<0,
    ∴-n>0,
    ∴点Q(-n,0)在x轴正半轴上;
    故选A.
    【点睛】
    本题主要考查平面直角坐标系中象限的坐标,熟练掌握在第一象限的点坐标为(+,+);在第二象限的点坐标为(-,+),在第三象限的点坐标为(-,-),在第四象限的点坐标为(+,-)是解题的关键.
    3、C
    【分析】
    根据两个点关于原点对称时,它们横、纵坐标均互为相反数,即可求出a的值.
    【详解】
    解:∵点A(﹣2,a)和点B(2,﹣3)关于原点对称,
    ∴a=3,
    故选:C.
    【点睛】
    此题考查的是关于原点对称的两点坐标关系,掌握关于原点对称的两点坐标关系:横、纵坐标均互为相反数是解决此题的关键.
    4、C
    【分析】
    点P到x、y轴的距离分别是4、3,表明点P的纵坐标、横坐标的绝对值分别为4与3,再由点P在第二象限即可确定点P的坐标.
    【详解】
    ∵P点到x、y轴的距离分别是4、3,
    ∴点P的纵坐标绝对值为4、横坐标的绝对值为3,
    ∵点P在第二象限内,
    ∴点P的坐标为(-3,4),
    故选:C.
    【点睛】
    本题考查了平面直角坐标系中点所在象限的特点,点到的坐标轴的距离,确定点的坐标,掌握这些知识是关键.要注意:点到x、y轴的距离是此点的纵坐标、横坐标的绝对值,而非横坐标、纵坐标的绝对值.
    5、A
    【分析】
    根据点F点N关于原点对称,即可求解.
    【详解】
    解:∵F点与N点关于原点对称,点F的坐标是(3,2),
    ∴N点坐标为(﹣3,﹣2).
    故选:A
    【点睛】
    本题主要考查了关于原点对称的点的坐标特征,熟练掌握若两点关于原点对称,横纵坐标均互为相反数是解题的关键.
    6、D
    【分析】
    先根据与点对应,求出平移规律,再利用平移特征求出点B′坐标即可
    【详解】
    解:∵与点对应,
    ∴平移1-3=-2,3-7=-4,
    先向下平移4个单位,再向左平移2个单位,
    ∵点B(7,7),
    ∴点B′(7-2,7-4)即.
    如图所示

    故选:D.
    【点睛】
    本题考查图形与坐标,点的平移特征,掌握点的平移特征是解题关键.
    7、B
    【分析】
    根据轴对称的性质判断即可.
    【详解】
    解:若在第一象限的ABC关于某条直线对称后的DEF在第四象限,则这条直线可以是x轴
    故选:B.
    【点睛】
    本题考察了轴对称的性质,利用轴对称的性质找出对称轴是本题的关键.
    8、C
    【分析】
    由对应点坐标确定平移方向,再由平移得出x,y的值,即可计算x+y.
    【详解】
    ∵A(3,﹣2),B(1,0)平移后的对应点C(5,x),D(y,0),
    ∴平移方法为向右平移2个单位,
    ∴x=﹣2,y=3,
    ∴x+y=1,
    故选:C.
    【点睛】
    本题考查坐标的平移,掌握点坐标平移的性质是解题的关键,点坐标平移:横坐标左减右加,纵坐标下减上加.
    9、C
    【分析】
    利用两个点关于原点对称时,它们的坐标符号相反,即点关于原点的对称点是,进而求出即可.
    【详解】
    解:点与点关于原点对称,
    ,,
    故.
    故选:C.
    【点睛】
    本题主要考查了关于原点对称点的坐标,解题的关键是正确掌握关于原点对称点的性质.
    10、C
    【分析】
    根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.
    【详解】
    解:∵点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,
    ∴点P的横坐标是-3,纵坐标是4,
    ∴点P的坐标为(-3,4).
    故选C.
    【点睛】
    本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.
    二、填空题
    1、
    【分析】
    根据在平面直角坐标系中,若两点关于原点对称,则这两点的横纵坐标均互为相反数,即可求解.
    【详解】
    解:点M(2,﹣4)关于原点对称的点的坐标为
    故答案为:
    【点睛】
    本题主要考查了两点关于坐标原点对称的特征,熟练掌握在平面直角坐标系中,若两点关于原点对称,则这两点的横纵坐标均互为相反数是解题的关键.
    2、
    【分析】
    根据x轴上点的纵坐标为0求解即可.
    【详解】
    解:∵点P在x轴上,
    ∴a-3=0,即a=3,
    故答案为:3.
    【点睛】
    本题主要考查了点的坐标,解题的关键是掌握平面直角坐标系内各象限、坐标轴上点的坐标符号特点.
    3、
    【分析】
    连接AD、BD,由勾股定理可得BD,求出∠OFA=30°,得到OA的值,进而求得OB的值,得到点D的坐标,由题意可得6次一个循环,即可求出经过第2022次旋转后,顶点的坐标.
    【详解】
    解:如图,连接AD,BD,

    在正六边形ABCDEF中,,
    ∴,
    在中,,
    ∴,
    ∴,
    ∴,
    ∴,
    ∵将正六边形ABCDEF绕坐标原点O顺时针旋转,每次旋转60°,
    ∴6次一个循环,
    ∵,
    ∴经过第2022次旋转后,顶点D的坐标与第一象限中D点的坐标相同,
    故答案为:.
    【点睛】
    此题考查了正六边形的性质,平面直角坐标系中图形规律问题,解题的关键是正确分析出点D坐标的规律.
    4、-1
    【分析】
    直接利用关于原点对称点的性质得出a,b的值,进而得出答案.
    【详解】
    解:∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,
    ∴a=﹣4,b=-3,
    则a-b=-4+3=-1.
    故答案为:﹣1.
    【点睛】
    此题主要考查了关于原点对称点的性质,正确得出a,b的值是解题关键.
    5、(-1,-2)
    【分析】
    平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y).据此作答.
    【详解】
    解:根据中心对称的性质,得点P(1,2)关于原点中心对称的点的坐标为(-1,-2).
    故答案为:(-1,-2).
    【点睛】
    本题主要考查了关于原点对称的点的坐标特征,熟知关于原点对称的点的坐标特征是解题的关键.
    三、解答题
    1、(1)点A的坐标;(2)P的坐标为:或或.
    【分析】
    (1)根据已知条件得到,得到,证明得到,再根据已知点的坐标计算即可;
    (2)根据题意:考虑作的对称图形,然后根据全等三角形的性质求解即可得.
    【详解】
    解:(1)过点A作轴,

    ∵,
    ∴,
    ∵在中:,
    ∴,
    ∵轴,
    ∴,
    在与中,

    ∴,
    ∴,
    又∵点B坐标为,点C坐标为,
    ∴,,
    ∴,
    ∴点A的坐标;
    (2)①作关于x轴的对称图形得到,
    ∴,
    ∵点B坐标为,点C坐标为,
    ∴,,
    ∴,
    ∴点A的坐标;
    ∴;

    ②∵点O,C关于直线对称,
    ∴作关于直线的对称图形得到,
    过点作轴,
    ∴,
    在与中,

    ∴,
    ∴,
    结合点所在的位置可得:;
    ③作关于x轴的对称图形得到,
    ∴,即,
    ∴与横坐标相同,纵坐标互为相反数,
    可得:;
    综上所述:P的坐标为:或或.
    【点睛】
    本题主要考查了坐标与图形的应用,等腰三角形的判定与性质,全等三角形的判定与性质,根据题意作出相应图形进行分类讨论是解题关键.
    2、
    (1)(3,2)
    (2)①(3,-1);②-1<t<1或2<t<4
    【分析】
    (1)点先关于轴对称的点坐标为,再关于轴对称的点坐标为,故可得点的伴随图形点坐标;
    (2)①时,点坐标为,直线为,此时点先关于轴对称的点坐标为,再关于轴对称的点坐标为,进而得到点的伴随图形点坐标;②由题意知直线为直线,、、三点的轴,的伴随图形点坐标依次表示为:,,,由题意可得,或解出的取值范围即可.
    (1)
    解:由题意知沿轴翻折得点坐标为;
    沿轴翻折得点坐标为
    故答案为:.
    (2)
    ①解:.,点坐标为,直线为,
    沿轴翻折得点坐标为
    沿直线翻折得点坐标为即为
    故答案为:
    ②解:∵直线经过原点
    ∴直线为
    ∴、、的伴随图形点坐标先沿轴翻折,点坐标依次为,,;
    然后沿直线翻折,点坐标依次表示为:,,
    由题意可知:或
    解得:或
    【点睛】
    本题考查了直角坐标系中的点对称,几何图形翻折.解题的关键在于正确的将翻折后的点坐标表示出来.
    3、(1)(2,-1);(2)①(-2,1);②t≥a+2或t≤-a-2
    【分析】
    (1)先求出对称轴,再表示N点坐标即可;
    (2)①以MN为底边作等腰三角形MNP,则点P在直线y=t=1上,直线OM与y=1的交点即为所求;
    ②表示出M、N、P的坐标,比较纵坐标的绝对值即可.
    【详解】
    (1)过点(0,t)且垂直于y轴的直线解析式为y=t
    ∵点M(2,t-2)与点N关于过点(0,t)且垂直于y轴的直线对称
    ∴可以设N点坐标为(2,n),且MN中点在y=t上
    ∴,记得
    ∴点N坐标为
    ∴当t =-3时,点N的坐标为
    (2)①∵以MN为底边作等腰三角形MNP,且点M(2,t-2)与点N直线y=t对称.
    ∴点P在直线y=t上,且P是直线OM与y=1的交点
    当t =1时M(2,-1),N(2,3)
    ∴OM直线解析式为
    ∴当y=1时,
    ∴P点坐标为(-2,1)
    ②由题意得,点M坐标为(2,t-2),点N坐标为,点P坐标为
    ∵,MNP上所有点到x轴的距离都不小于a
    ∴只需要或者
    当M、N、P都在x轴上方时,,此时,解得t≥a+2
    当MNP上与x轴有交点时,此时MNP上所有点到x轴的距离可以为0,不符合要求;
    当M、N、P都在x轴下方时,,此时,解得t≤-a-2
    综上t≥a+2或t≤-a-2
    【点睛】
    本题考查坐标与轴对称、等腰三角形的性质等知识,解题的关键是利用轴对称表示坐标,属于中考常考题型.
    4、(1)作图见解析,(0,﹣2),(﹣2,﹣4),(﹣4,﹣1);(2)5;(3)见解析
    【分析】
    (1)直接利用轴对称图形的性质得出对应点位置进而得出答案;
    (2)直接利用△ABC所在长方形面积减去周围三角形面积进而得出答案;
    (3)先确定A关于轴的对称点,再连接交轴于则此时满足要求.
    【详解】
    解:(1)如图所示:△A1B1C1即为所求,
    A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);
    故答案为:(0,﹣2),(﹣2,﹣4),(﹣4,﹣1);
    (2)△ABC的面积为:12﹣×1×4﹣×2×2﹣×2×3=5;
    故答案为:5;
    (3)如图所示:点P即为所求.

    【点睛】
    本题考查的是轴对称的作图,坐标与图形,掌握“利用轴对称确定线段和取最小值时点的位置”是解本题的关键.
    5、(1)作图见解析;(2)16;(3)(0,4)或(0,-4).
    【分析】
    (1)如图所示,由点C与点A关于y轴对称可知C坐标为(4,0),描点画图即可.
    (2)得出△ABC的底和高再由三角形面积公式计算即可.
    (3)S△ACD=S△ABC为同底不同高,故由(2)问知,再由点D在y轴上知D点坐标为(0,4)或(0,-4).
    【详解】
    解:(1)如图所示,点A为(-4,0),
    ∵点C与点A关于y轴对称
    ∴点C坐标为(4,0)

    (2)由×底×高有

    (3)∵S△ACD=S△ABC,AC=AC

    即D点的纵坐标为4或-4
    又∵D点在y轴上
    故D点坐标为(0,4)或(0,-4).
    【点睛】
    本题考查了坐标轴中的点坐标问题、轴对称问题、求三角形面积,解题的关键是要运用数形结合的思想.
    6、(1)见解析;(2)画图见解析,点P的坐标为(-5,3)
    【分析】
    (1)根据平移的特点先找出D、E、F所在的位置,然后根据题意建立坐标系即可;
    (2)将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点P、Q、M,即点P可以看作是点D向左平移2个单位,向上平移3个单位得到的,由此求解即可.
    【详解】
    解:(1)如图所示,即为所求;

    (2)如图所示,△PQM即为所求;
    ∵P是D(-3,0)横坐标减2,纵坐标加3得到的,
    ∴点P的坐标为(-5,3).

    【点睛】
    本题主要考查了平移作图,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握点坐标平移的特点.
    7、(1)(-1,1);(5,1);(2)-2;(3)<-2或>1.
    【分析】
    (1)根据一次反射点和二次反射点的定义求解即可;
    (2)根据二次反射点的意义求解即可;
    (3)根据题意得,,,分<0和>0时△与△BCD无公共点,求出t的取值范围即可.
    【详解】
    解:(1)根据一次反射点的定义可知,A(-1,-1)一次反射点为(-1,1),
    点A关于直线:x=2的二次反射点为(5,1)
    故答案为: (-1,1);(5,1).
    (2)∵A(-1,-1),B(-3,1),且点B是点A关于直线:x=a的二次反射点,

    解得,
    故答案为: -2.
    (3)由题意得,(-1,1),(-3,-1),(3,-3),点D(1,-1)在线段上.
    当<0时,只需关于直线=的对称点在点B左侧即可,如图1.
    ∵当与点B重合时,=-2,
    ∴当<-2时,△与△BCD无公共点.
    当>0时,只需点D关于直线x=的二次反射点在点D右侧即可,如图2,
    ∵当与点D重合时,=1,
    ∴当>1时,△与△BCD无公共点.
    综上,若△与△BCD无公共点,的取值范围是<-2,或>1.

    【点睛】
    本题考查了轴对称性质,动点问题,新定义二次反射点的理解和运用;解题关键是对新定义二次反射点的正确理解.
    8、(1)见解析;(2)见解析
    【分析】
    (1)过点B作MQ∥x轴,过点A作AM⊥MQ于点M,过点N作NQ⊥MQ于点Q,连接BN,连接AN交BC于点P,则∠BAP=45°,先证得△ABM≌△BNQ,可得AB=BN,∠ABM=∠BNQ,从而得到∠ABN=90°,即可求解;
    (2)在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为△ABC的高.过点B作BG⊥x轴于点G,过点A作AD⊥x轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,先证得△ACD≌△QBG,从而得到∠ACD=∠QBG,进而得到∠CHQ=90°,即可求解.
    【详解】
    解:(1)如图,过点B作MQ∥x轴,过点A作AM⊥MQ于点M,过点N作NQ⊥MQ于点Q,连接BN,连接AN交BC于点P,则∠BAP=45°,如图所示,点P即为所求,

    理由如下:
    根据题意得:AM=BQ=5,BM=QN=3,∠AMB=∠BQN=90°,
    ∴△ABM≌△BNQ,
    ∴AB=BN,∠ABM=∠BNQ,
    ∴∠BAP=∠BNP,
    ∵∠NBQ+∠BNQ=90°,
    ∴∠ABM +∠BNQ=90°,
    ∴∠ABN=90°,
    ∴∠BAP=∠BNP=45°;
    (2)如图,在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为△ABC的高.

    理由如下:
    过点B作BG⊥x轴于点G,过点A作AD⊥x轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,
    ∴△ACD≌△QBG,
    ∴∠ACD=∠QBG,
    ∵∠QBG+∠BQG=90°,
    ∴∠ACD +∠BQG=90°,
    ∴∠CHQ=90°,
    ∴BH⊥AC,即BH为△ABC的高.
    【点睛】
    本题主要考查了图形与坐标,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.
    9、(1)见解析;(2)见解析,点P的坐标为(−3,0)
    【分析】
    (1)先分别作出点A、B、C关于y轴的对称点,然后再顺次连接可得;
    (2)作点A关于x轴的对称点A″,再连接A″C交x轴于点P,再确定点P的坐标即可.
    【详解】
    解:(1)如图所示:即为所求.

    (2)作点A关于x轴的对称点A′′,连结A′′C,交x轴于点P,点P即为所求,点P的坐标为(−3,0)

    【点睛】
    本题主要考查作图﹣轴对称变换,熟练掌握轴对称变换的定义和性质及最短路径问题是解答本题的关键.
    10、(1)见解析,体育场A的坐标为(﹣4,3)、超市B的坐标为(0,4)、市场C的坐标为(4,3)、文化宫D的坐标为(2,﹣3);(2)见解析
    【分析】
    (1)以火车站所在的位置为坐标原点,建立平面直角坐标系,即可表示出体育场A、超市B市场C、文化宫D的坐标.
    (2)根据点的坐标的意义描出点E.
    【详解】
    解:(1)平面直角坐标系如图所示,体育场A的坐标为(﹣4,3)、超市B的坐标为(0,4)、市场C的坐标为(4,3)、文化宫D的坐标为(2,﹣3).
    (2)如图,点E即为所求.

    【点睛】
    本题考查了坐标确定位置,主要是对平面直角坐标系的定义和点的坐标的写法的考查,是基础题.

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题,共27页。试卷主要包含了在平面直角坐标系中,点P等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步达标检测题:

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步达标检测题,共27页。试卷主要包含了如果点P,点P在第二象限内,P点到x,点P关于y轴对称点的坐标是.,在平面直角坐标系中,点P等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步测试题:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步测试题,共29页。试卷主要包含了如果点P,将点P等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map