![2022年最新精品解析冀教版九年级数学下册第三十章二次函数课时练习试题(含详解)第1页](http://img-preview.51jiaoxi.com/2/3/12721039/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版九年级数学下册第三十章二次函数课时练习试题(含详解)第2页](http://img-preview.51jiaoxi.com/2/3/12721039/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版九年级数学下册第三十章二次函数课时练习试题(含详解)第3页](http://img-preview.51jiaoxi.com/2/3/12721039/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版九年级下册第30章 二次函数综合与测试达标测试
展开
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试达标测试,共32页。试卷主要包含了二次函数的最大值是等内容,欢迎下载使用。
九年级数学下册第三十章二次函数课时练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,1),(4,6),(3,1),则( )
A.y≤3 B.y≤6 C.y≥-3 D.y≥6
2、已知点、在二次函数的图象上,当,时,.若对于任意实数、都有,则的范围是( ).
A. B. C.或 D.
3、已知二次函数y=ax2-2ax-1(a是常数,a≠0),则下列命题中正确的是( )
A.若a=1,函数图象经过点(-1,1) B.若a=-2,函数图象与x轴交于两点
C.若a<0,函数图象的顶点在x轴下方 D.若a>0且x≥1,则y随x增大而减小
4、已知二次函数y=ax2+bx+c的图象如图所示,则( )
A.b>0,c>0,Δ=0 B.b<0,c>0,Δ=0
C.b<0,c<0,Δ=0 D.b>0,c>0,Δ>0
5、下列二次函数的图象中,顶点在第二象限的是( )
A. B.
C. D.
6、二次函数的最大值是( )
A. B. C.1 D.2
7、某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率,第3年的销售量为台,则关于的函数解析式为( )
A. B.
C. D.
8、将抛物线的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过( )
A. B. C. D.
9、将抛物线y=x2先向右平移3个单位长度,再向上平移5个单位长度,所得抛物线的解析式为( )
A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+3
10、2020年2月3日,随着南立交匝道最后一条交通线划线完毕,蒙山大道祊河桥迎来了南北东西方向全线通车,蒙山高架路“踏实落地”,市民从此可一路畅通.蒙山大道祊河桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、二次函数 y 2x21 的图象开口方向______.(填“向上”或“向下”)
2、据了解,某蔬菜种植基地2019年的蔬菜产量为100万吨,2021年的蔬菜产量为万吨,如果2019年至2021年蔬菜产量的年平均增长率为,那么关于的函数解析式为_________.
3、如图,院子里有块直角三角形空地ABC,∠C=90°.直角边AC=3m、BC=4m,现准备修一个如图所示的矩形DEFG的养鱼池,当矩形DEFG面积最大时,EF的长为 _____.
4、如图,已知点A是抛物线图像上一点,将点A向下平移2个单位到点B,再把A绕点B顺时针旋转120°得到点C,如果点C也在该抛物线上,那么点A的坐标是______.
5、若点(0,a),(3,b)都在二次函数y=(x﹣1)2的图象上,则a与b的大小关系是:a______b(填“>”,“<”或“=”).
三、解答题(5小题,每小题10分,共计50分)
1、已知,如图,直线分别与轴、轴交于点、,抛物线经过点和点,其对称轴与直线交于点.
(1)求二次函数的表达式;
(2)若抛物线(其中)与抛物线的对称轴交于点.与直线交于点,过点作轴交抛物线的对称轴左侧部分于点.
①若点和点重合,求的值;
②若点在点的下方,求、的长(用含有的代数式表示);
③在②的条件下,设的长度为个单位,的长度为个单位,若.直接写出的范围.
2、某政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,月销售量(件)与销售单价(元)之间的关系可看作一次函数:,已知当销售单价定为25元时,李明每月获得利润为1250元.
(1)求的值;
(2)当销售单价定为多少元时,每月可获得最大利润?并求最大利润是多少?
(注:利润=(销售单价-进价)×销售量)
3、已知抛物线与x轴负半轴交于点A,与x轴正半轴交于点B,与y轴交于点C,点P为抛物线上一动点(点P不与点C重合).
(1)当为直角三角形时,求的面积
(2)如图,当时,过点P作轴于点Q,求BQ的长.
(3)当以点A,B,P为顶点的三角形和相似时(不包括两个三角形全等),求m的值.
4、如图,在平面直角坐标系中,抛物线y=ax2﹣x﹣4与x轴交于点A(4,0),与y轴交于点C.点B(12,0),联结BC.
(1)求该抛物线解析式;
(2)求∠ACB的正弦值;
(3)如图,点D为抛物线上一点,直线AD交y轴于点E,交线段BC于点F.若△ECA∽△EFC,求点D的坐标.
5、已知二次函数y=ax2+bx(a≠0)的图象经过点A(2,4),B(4,0).
(1)求这个二次函数的表达式.
(2)将x轴上的点P先向上平移3n(n>0)个单位得点P1,再向左平移2n个单位得点P2,若点P1,P2均在该二次函数图象上,求n的值.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据图像经过三点求出函数表达式,再根据最值的求法求出结果.
【详解】
解:∵二次函数y=ax2+bx+c经过(﹣1,1),(4,6),(3,1),
∴,
解得:,
∴函数表达式为y=x2-2x-2,开口向上,
∴函数的最小值为=,即y≥-3,
故选C.
【点睛】
本题考查了待定系数法求二次函数表达式,二次函数的最值,属于基础题,解题的关键是掌握二次函数最值的求法.
2、A
【解析】
【分析】
先根据二次函数的对称性求出b的值,再根据对于任意实数x1、x2都有y1+y2≥2,则二次函数y=x2-4x+n的最小值大于或等于1即可求解.
【详解】
解:∵当x1=1、x2=3时,y1=y2,
∴点A与点B为抛物线上的对称点,
∴,
∴b=-4;
∵对于任意实数x1、x2都有y1+y2≥2,
∴二次函数y=x2-4x+n的最小值大于或等于1,
即,
∴c≥5.
故选:A.
【点睛】
本题考察了二次函数的图象和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),其对称轴是直线:,顶点纵坐标是,抛物线上两个不同点P1(x1,y1),P2(x2,y2),若有y1=y2,则P1,P2两点是关于抛物线对称轴对称的点,且这时抛物线的对称轴是直线:.
3、B
【解析】
【分析】
根据二次函数的图象与性质逐项分析即可.
【详解】
A、当a=1,x=-1时,,故函数图象经过点(-1,2),不经过点(-1,1),故命题错误;
B、a=-2时,函数为,令y=0,即,由于,所以方程有两个不相等的实数根,从而函数图象与x轴有两个不同的交点,故命题正确;
C、当a0,
∴二次函数y=2x2+1图象的开口方向是向上,
故答案为:向上.
【点睛】
本题主要考查二次函数的图象与性质,由a的符号确定抛物线的开口方向是解题的关键.
2、
【解析】
【分析】
根据题意可得2020年的蔬菜产量为,2021年的蔬菜产量为,2021年的蔬菜产量为y万吨,由此即可得.
【详解】
解:根据题意可得:2020年的蔬菜产量为,
2021年的蔬菜产量为,
∴,
故答案为: .
【点睛】
题目主要考查二次函数的应用,理解题意,熟练掌握增长率问题是解题关键.
3、##
【解析】
【分析】
过点作,交于点,等面积法求得,设,进而根据得出比例式,根据矩形的面积为,得到关于的二次函数,根据二次函数的性质即可求得面积最大时的的值,进而求得的长.
【详解】
解:如图,过点作,交于点,
∠C=90°.直角边AC=3m、BC=4m,
设,则
四边形是矩形
,
整理得
设矩形的面积为,则
当取得最大值时,,此时
故答案为:
【点睛】
本题考查了矩形的性质,勾股定理,相似三角形的性质与判定,二次函数的性质,掌握以上知识是解题的关键.
4、(,)
【解析】
【分析】
设A(x,x2),根据平移、旋转的性质求出C点坐标,代入抛物线求出x,故可求解.
【详解】
解:∵点A是抛物线图像上一点
故设A(x,x2),
∵将点A向下平移2个单位到点B,
故B(x,x2-2)
∵把A绕点B顺时针旋转120°得到点C,如图,
过点B作BD⊥AB于B,过点C作CD⊥BD于D,
AB=BC=2,∠ABC=120°,∠ABD=90°,
∴∠DBC=30°
故CD=,BD=,
故C(x+,x2-3),
把C(x+,x2-3)代入,
∴x2-3=(x+)2,
解得x=-
∴A(-,3)
故答案为:(,3).
【点睛】
此题主要考查二次函数与几何综合,解题的关键是熟知坐标与函数的关系、平移与旋转的特点及直角三角形的性质.
5、<
【解析】
【分析】
根据二次函数的解析式求得对称轴以及开口方向,根据点与对称轴的距离越远函数值越大即可判断的大小关系.
【详解】
解:∵二次函数y=(x﹣1)2,,开口向上,对称轴为
又点(0,a),(3,b)都在二次函数y=(x﹣1)2的图象上,
故答案为:
【点睛】
本题考查了二次函数图象的性质,掌握二次函数图象的性质是解题的关键.
三、解答题
1、 (1)
(2)①;②,当时,;当时,;③
【解析】
【分析】
(1)先确定A(-3,0),B(0,3),分别代入解析式,求得b,c的值即可;
(2)①利用对称轴与直线y=x+3的交点,确定点C(-1,2),代入解析式中,求的值;
②分当<m<1和m≥1两种情况解答即可;
③根据得b=m+1,结合前面的解答直接写出的范围即可.
(1)
∵直线分别与轴、轴交于点、,
∴A(-3,0),B(0,3),
把A(-3,0),B(0,3)分别代入解析式,得
,
解得
∴抛物线的解析式为:.
(2)
①∵的对称轴为直线,直线AB的解析式为y=x+3,
∴点、,
∵点和点重合,
∴,
解得:,
∵,
∴.
②∵点、,且点D在点C的下方,
∴CD=2-()=;
∵点D在点C的下方,
∴,
当x=1时,,
∵轴,
∴点F的纵坐标为,
∴=即=0,
解得x== -1±|m-1|,
当时,x=-1+1-m=-m,此时,交点D不满足在C的下方,舍去;
或x=-1-1+m=m-2,
∴EF=;
当m≥1时,x=-1+m-1=m-2,此时,交点D不满足在C的下方,舍去;
或x=-1-m+1=-m,
∴EF=.
③∵,
∴=,
∴=,
∴b=m+1,b=-(m+1)舍去,
∴m≥1.
【点睛】
本题考查了待定系数法确定解析式,一元二次方程的解法,抛物线的平移,熟练掌握抛物线的性质,正确解方程是解题的关键.
2、 (1)的值是500;
(2)当销售单价定为35元时,每月可获得最大利润,最大利润是2250元
【解析】
【分析】
(1)根据利润=(销售单价-进价)×销售量列方程求解即可;
(2)根据利润=(销售单价-进价)×销售量得到w关于x的二次函数关系式,利用二次函数的性质求解即可.
(1)
解:由题意可得,,
解得:,
答:的值是500;
(2)
解:设利润为w元,
由题意:,
,
∵-10
相关试卷
这是一份数学九年级下册第30章 二次函数综合与测试同步练习题,共27页。试卷主要包含了根据表格对应值,抛物线y=42+3的顶点坐标是等内容,欢迎下载使用。
这是一份冀教版九年级下册第30章 二次函数综合与测试练习,共29页。
这是一份2021学年第30章 二次函数综合与测试同步训练题,共32页。试卷主要包含了下列函数中,随的增大而减小的是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)