|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年强化训练冀教版九年级数学下册第三十章二次函数综合练习试卷(无超纲带解析)
    立即下载
    加入资料篮
    2022年强化训练冀教版九年级数学下册第三十章二次函数综合练习试卷(无超纲带解析)01
    2022年强化训练冀教版九年级数学下册第三十章二次函数综合练习试卷(无超纲带解析)02
    2022年强化训练冀教版九年级数学下册第三十章二次函数综合练习试卷(无超纲带解析)03
    还剩31页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第30章 二次函数综合与测试习题

    展开
    这是一份2021学年第30章 二次函数综合与测试习题,共34页。试卷主要包含了下列函数中,随的增大而减小的是,二次函数y=ax2﹣4ax+c,抛物线的顶点为等内容,欢迎下载使用。

    九年级数学下册第三十章二次函数综合练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、二次函数y=ax2+bx+c(a≠0)的图象的一部分如图所示,已知图像经过点(﹣1,0),其对称轴为直线x=1.下列结论:①abc<0;②b2﹣4ac<0;③8a+c<0;④若抛物线经过点(﹣3,n),则关于x的一元二次方程ax2+bx+c﹣n=0(a≠0)的两根分别为﹣3,5.上述结论中正确个数有(  )

    A.1个 B.2个 C.3个 D.4个
    2、如图,抛物线y=ax2+bx+c的顶点为P(﹣2,2),且与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线y=﹣x由(﹣2,2)移动到(1,﹣1),此时抛物线与y轴交于点A′,则AA′的长度为(  )

    A.2 B.3 C.3 D.D3
    3、已知二次函数,当时,x的取值范围是,且该二次函数图象经过点,则p的值不可能是( )
    A.-2 B.-1 C.4 D.7
    4、下列函数中,随的增大而减小的是( )
    A. B.
    C. D.
    5、抛物线的函数表达式为,若将y轴向左平移3个单位长度,将x轴向下平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为( )
    A. B.
    C. D.
    6、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )

    A.米 B.10米 C.米 D.12米
    7、如图,给出了二次函数的图象,对于这个函数有下列五个结论:①<0;②ab>0;③;④;⑤当y=2时,x只能等于0.其中结论正确的是( )

    A.①④ B.③⑤ C.②⑤ D.③④
    8、二次函数y=ax2﹣4ax+c(a>0)的图象过A(﹣2,y1),B(0,y2),C(3,y3),D(5,y4)四个点,下列说法一定正确的是( )
    A.若y1y2>0,则y3y4>0 B.若y1y4>0,则y2y3>0
    C.若y2y4<0,则y1y3<0 D.若y3y4<0,则y1y2<0
    9、抛物线的顶点为( )
    A. B. C. D.
    10、如图,二次函数y=ax2+bx+c(a≠0)图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①abc>0;②b2﹣4ac>0;③当y<0时,x<﹣1或x>3;④3a+c=0.其中正确的有( )

    A.4个 B.3个 C.2个 D.1个
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、抛物线y=(x﹣1)2+3的顶点坐标为___.
    2、已知抛物线,将此二次函数解析式用配方法化成的形式得__________,此抛物线经过两点A(-2,y1)和,则与的大小关系是_____________.
    3、已知二次函数的图象如图所示,有下列五个结论:①;②;③;④;⑤(为实数且).其中正确的结论有______(只填序号).

    4、将函数的图象向______平移______个单位长度,再向______平移______个单位长度,可以得到函数的图象.
    5、加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=-0.3x2+1.5x-1,则最佳加工时间为__min.
    三、解答题(5小题,每小题10分,共计50分)
    1、己知二次函数.
    (1)若此二次函数图象的对称轴为,求它的解析式;
    (2)当时,y随x增大而减小,求k的取值范围.
    2、如图,在平面直角坐标系中,已知点的坐标为,且,抛物线()图象经过,,三点.

    (1)求抛物线的解析式;
    (2)是抛物线对称轴上的一点,当的值最小时,求点坐标;
    (3)若点是直线下方的抛物线上的一个动点,作于点,当的值最大时,求此时点的坐标及的最大值.
    3、二次函数y=ax2+bx+c(a≠0)的图象如图所示,求此二次函数表达式.

    4、如图,Rt中,.点P从点A出发,沿射线方向以每秒1个单位长度的速度向终点B运动,当点P不与点A重合时,将线段绕点P旋转使(点在点P右侧),过点作交射线于点M,设点P运动的时间为t(秒).

    (1)的长为___________(用含t的代数式表示)
    (2)当落在的角平分线上时,求此时t的值.
    (3)设与重叠部分图形的面积为S(平方单位),求S关于t的函数关系式.并求当t为何值时,S有最大值,最大值为多少?
    5、在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(0,6)和B(﹣2,﹣2).

    (1)求c的值,并用含a的代数式表示b;
    (2)当a=时.
    ①求此函数的解析式,并写出当﹣4≤x≤2时,y的最大值和最小值;
    ②如图,抛物线y=ax2+bx+c与x轴的左侧交点为C,作直线AC,D为直线AC下方抛物线上一动点,与AC交于点F,作DM⊥AC于点M.是否存在点D使△DMF的周长最大?若存在,请求出D点的坐标;若不存在,请说明理由.

    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    根据图象可判断abc的符号,可判断结论①,由图象与x轴的交点个数可判断②,由对称轴及x=−2时的函数值即可判断③,由x=−3和对称轴即可判断④.
    【详解】
    解:∵图象开口向下,
    ∴a<0,
    ∵对称轴为直线x=1,
    ∴−=1,
    ∴b=−2a>0,
    ∵图象与y轴的交点在x轴的上方,
    ∴c>0,
    ∴abc<0,
    ∴①说法正确,
    由图象可知抛物线与x轴有两个交点,
    ∴b2−4ac>0,
    ∴②错误,
    由图象可知,当x=−2时,y<0,
    ∴4a−2b+c=4a−2(−2a)+c=8a+c<0,
    ∴③正确,
    由题意可知x=−3是ax2+bx+c−n=0(a≠0)的一个根,
    ∵对称轴是x=1,
    ∴另一个根为x=5,
    ∴④正确,
    ∴正确的有①③④,
    故选:C.
    【点睛】
    本题主要考查二次函数的图象与性质,关键是要牢记图象与各系数之间的关系.
    2、B
    【解析】
    【分析】
    先运用待定系数法求出原抛物线的解析式,再根据平移不改变二次项系数,得出平移后的抛物线解析式,求出A′的坐标,进而得出AA′的长度.
    【详解】
    ∵抛物线y=ax2+bx+c的顶点为P(﹣2,2),
    ∴y=a(x+2)2+2,
    ∵与y轴交于点A(0,3),
    ∴3=a(0+2)2+2,解得a=
    ∴原抛物线的解析式为:y=(x+2)2+2,
    ∵平移该抛物线使其顶点P沿直线y=﹣x由(﹣2,2)移动到(1,﹣1),
    ∴平移后的抛物线为y=(x﹣1)2﹣1,
    ∴当x=0时,y=,
    ∴A′的坐标为(0,),
    ∴AA′的长度为:3﹣()=3.
    故选:B.
    【点睛】
    本题考查了平移、二次函数的知识;解题的关键是熟练掌握二次函数的性质,从而完成求解.
    3、C
    【解析】
    【分析】
    根据题意求得抛物线的对称轴,进而求得时,的取值范围,根据的纵坐标小于0,即可判断的范围,进而求解
    【详解】
    解:∵二次函数,当时,x的取值范围是,
    ∴,二次函数开口向下
    解得,对称轴为
    当时,,
    经过原点,

    根据函数图象可知,当,,
    根据对称性可得时,
    二次函数图象经过点,

    不可能是4
    故选C
    【点睛】
    本题考查了抛物线与一元一次不等式问题,求得抛物线的对称轴是解题的关键.
    4、C
    【解析】
    【分析】
    根据各个选项中的函数解析式,可以判断出y随x的增大如何变化,从而可以解答本题.
    【详解】
    解:A.在中,y随x的增大而增大,故选项A不符合题意;
    B.在中,y随x的增大与增大,不合题意;
    C.在中,当x>0时,y随x的增大而减小,符合题意;
    D.在,x>2时,y随x的增大而增大,故选项D不符合题意;
    故选:C.
    【点睛】
    本题考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.
    5、C
    【解析】
    【分析】
    此题可以转化为求将抛物线“向右平移3个单位长度,向上平移3个单位长度”后所得抛物线解析式,将抛物线直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.
    【详解】
    解:∵抛物线的顶点坐标为 ,
    ∴将抛物线向右平移3个单位长度,向上平移3个单位长度后得到的抛物线顶点坐标为 ,
    ∴将抛物线向右平移3个单位长度,向上平移3个单位长度后得到的抛物线的解析式为,
    ∴将y轴向左平移3个单位长度,将x轴向下平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为.
    故选:C
    【点睛】
    此题主要考查了二次函数图象与几何变换,正确掌握平移规律——左加右减,上加下减是解题关键.
    6、B
    【解析】
    【分析】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
    【详解】

    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
    设抛物线的解析式为y=ax2,
    ∵O点到水面AB的距离为4米,
    ∴A、B点的纵坐标为-4,
    ∵水面AB宽为20米,
    ∴A(-10,-4),B(10,-4),
    将A代入y=ax2,
    -4=100a,
    ∴,
    ∴,
    ∵水位上升3米就达到警戒水位CD,
    ∴C点的纵坐标为-1,

    ∴x=±5,
    ∴CD=10,
    故选:B.
    【点睛】
    本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
    7、D
    【解析】
    【分析】
    由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    ①由抛物线与x轴有两个交点可以推出b2-4ac>0,故①错误;
    ②由抛物线的开口方向向下可推出a<0;
    因为对称轴为x==2>0,又因为a<0,∴b>0,故ab<0;②错误;
    ③由图可知函数经过(-1,0),∴当,,故③正确;
    ④对称轴为x=,∴,故④正确;
    ⑤当y=2时,,故⑤错误;
    ∴正确的是③④
    故选:D
    【点睛】
    二次函数y=ax2+bx+c系数符号的确定:
    (1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.
    (2)b由对称轴和a的符号确定:由对称轴公式x=−判断符号.
    (3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.
    (4)b2-4ac由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.
    8、C
    【解析】
    【分析】
    根据函数表达式得出函数的开口方向和对称轴,从而得到y3<y2<y4<y1,再结合题目一一判断即可.
    【详解】
    解:由函数表达式可知:函数图像开口向上,对称轴为直线x==2,
    ∵-2<0<2<3<5,
    ∴y3<y2<y4<y1,
    若y1y2>0,则y3y4>0或y3y4<0,选项A不符合题意,
    若y1y4>0,则y2y3>0或y2y3<0,选项B不符合题意,
    若y2y4<0,则y1y3<0,选项C符合题意,
    若y3y4<0,则y1y2<0或y1y2>0,选项D不符合题意,
    故选:C.
    【点睛】
    本题考查二次函数的性质,二次函数图象上的点的坐标特征,解题的关键是学会利用图象法解决问题,属于中考常考题型.
    9、B
    【解析】
    【分析】
    根据抛物线的顶点式y=a(x-h)2+k可得顶点坐标是(h,k).
    【详解】
    解:∵y=2(x-1)2+3,
    ∴抛物线的顶点坐标为(1,3),
    故选:B.
    【点睛】
    本题考查二次函数的性质,解题的关键是熟练掌握抛物线的顶点式y=a(x-h)2+k,顶点坐标是(h,k).
    10、B
    【解析】
    【分析】
    ①根据函数图象及函数的对称轴在y轴右侧,则ab<0,而c>0,即可求解;②抛物线和x轴有两个交点,即可求解;③点B坐标为(﹣1,0),点A(3,0),即可求解;④对称轴为x=1,则b=﹣2a,点B(﹣1,0),故a﹣b+c=0,即可求解.
    【详解】
    解:①∵函数图象开口向下

    又函数的对称轴在y轴右侧,


    ∵抛物线与y轴正半轴相交,
    ∴c>0,
    ∴abc<0,故原答案错误,不符合题意;
    ②∵抛物线和x轴有两个交点,
    ∴b2﹣4ac>0正确,符合题意;
    ③∵点B坐标为(﹣1,0),且对称轴为x=1,
    ∴点A(3,0),
    ∴当y<0时,x<﹣1或x>3.故正确,符合题意;
    ④∵函数的对称轴为:x=﹣=1,
    ∴b=﹣2a,
    ∵点B坐标为(﹣1,0),
    ∴a﹣b+c=0,
    而b=﹣2a,

    即3a+c=0,正确,符合题意;
    故选:B.
    【点睛】
    本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点等.
    二、填空题
    1、(1,3)
    【解析】
    【分析】
    根据顶点式判断顶点即可.
    【详解】
    解:∵抛物线解析式为y=(x﹣1)2+3
    ∴顶点坐标是(1,3).
    故答案为:(1,3)
    【点睛】
    本题考查了二次函数解析式---顶点式,明确的顶点坐标为(h,k)是解答本题的关键.
    2、
    【解析】
    【分析】
    (1)利用配方法将二次函数的一般式转化为顶点式;(2)将与分别代入二次函数解析式中,计算出与的值,并比较大小.
    【详解】
    (1)解:,
    故答案为:.
    (2)当 时,
    当时,
    ∴ 与的大小关系是,
    故答案为:.
    【点睛】
    本题考查用配方法将二次函数的一般式转化为顶点式,以及二次函数的增减性,熟练掌握配方法是解决本题的关键.
    3、③④⑤
    【解析】
    【分析】
    先利用二次函数的开口方向,与轴交于正半轴,二次函数的对称轴为:判断的符号,可判断①,由图象可得:在第三象限,可判断②,由抛物线与轴的一个交点在之间,则与轴的另一个交点在之间,可得点在第一象限,可判断③,由在第四象限,抛物线的对称轴为: 即 可判断④,当时,,当, 此时: 可判断⑤,从而可得答案.
    【详解】
    解:由二次函数的图象开口向下可得:
    二次函数的图象与轴交于正半轴,可得
    二次函数的对称轴为: 可得
    所以: 故①不符合题意;
    由图象可得:在第三象限,

    故②不符合题意;
    由抛物线与轴的一个交点在之间,则与轴的另一个交点在之间,
    点在第一象限,
    故③符合题意;
    在第四象限,

    抛物线的对称轴为:


    故④符合题意;
    当时,,
    当,
    此时:
    故⑤符合题意;
    综上:符合题意的有:③④⑤,
    故答案为:③④⑤.
    【点睛】
    本题考查的是二次函数的图象与性质,熟练的应用二次函数的图象与性质判断代数式的符号是解题的关键.
    4、 左 1 下 2
    【解析】
    【分析】
    根据二次函数平移的性质解答.
    【详解】
    解:∵函数的图象向左平移1个单位长度,再向下平移2个单位长度,可以得到函数的图象.
    故答案为:左,1,下,2.
    【点睛】
    此题考查了二次函数图象平移的性质:上加下减,左加右减,熟记性质是解题的关键.
    5、2.5.
    【解析】
    【分析】
    根据二次函数的对称轴公式直接计算即可.
    【详解】
    解:∵的对称轴为(min),
    故:最佳加工时间为2.5min,
    故答案为:2.5.
    【点睛】
    此题主要考查了二次函数性质的应用,涉及求顶点坐标、对称轴方程等,记住抛物线顶点公式是解题关键.
    三、解答题
    1、 (1)y= x 2−2x−3
    (2)
    【解析】
    【分析】
    (1)直接根据二次函数对称轴的概念可得答案;
    (2)根据二次函数的性质可得问题的答案.
    (1)
    解:由题意,得:a=1,b=−k,c= k−5;
    ∴对称轴x=,
    解得:k=2,
    ∴二次函数解析式y= x 2−2x−3;
    (2)
    解:二次函数,a=1>0,
    ∴其图象开口向上,
    ∵时,y随x 的增大而减小,
    ∴对称轴位于x=1的右侧或对称轴为直线x=1,
    ∴,
    解得:.
    【点睛】
    此题考查的是二次函数的图象与系数的关系,掌握对称轴的概念、二次函数的图象的性质是解决此题关键.
    2、 (1);
    (2)();
    (3)点P(2,-6),PD最大值为
    【解析】
    【分析】
    (1)根据点B的坐标,得出OB的长,进而根据即可得到OA、OC的长,利用待定系数法求出函数解析式;
    (2)利用配方法求出抛物线的对称轴,连接AC,交对称轴于一点即为点M,此时的值最小,求出直线AC的解析式,当时求出y的值即可得到点M的坐标;
    (3)过点P作PH平行于y轴,交AC于点H,根据等腰直角三角形的性质求出∠OAC=∠OCA=45°,根据平行线的性质求出∠PHD=∠OCA=45°,设点P(x,),则点H(x,x-4),根据正弦函数定义得到,根据函数的性质得解问题.
    (1)
    解:∵点的坐标为,
    ∴OB=1,
    ∵,
    ∴OA=OC=4,
    ∴点A的坐标为(4,0),点C的坐标为(0,-4),
    将点A、B、C的坐标代入中,得
    ,解得,
    ∴抛物线的解析式为;
    (2)
    解:∵,
    ∴抛物线的对称轴为直线,
    连接AC,交对称轴于一点即为点M,此时的值最小,
    设直线AC的解析式为,
    ∴,解得,
    ∴直线AC的解析式为y=x-4,
    当时,,
    ∴点M的坐标为();
    (3)
    解:过点P作PH平行于y轴,交AC于点H,
    ∵OA=OC,
    ∴∠OAC=∠OCA=45°,
    ∴∠PHD=∠OCA=45°,
    设点P(x,),则点H(x,x-4),
    ∴,
    ∵,
    ∴PD有最大值,当x=2时,PD最大值为,
    此时点P(2,-6).

    【点睛】
    此题考查了待定系数法求抛物线解析式,抛物线的对称轴,化一般式为顶点式,最短路径问题,二次函数的性质,锐角三角函数,正确掌握抛物线的各知识点是解题的关键,这是一道二次函数与一次函数的综合题.
    3、y=﹣x2﹣2x+3
    【解析】
    【分析】
    根据图象确定经过抛物线的三个点,设二次函数解析式为y=a(x+3)(x﹣1),再代入(0,3)利用待定系数法计算即可.
    【详解】
    解:由图象可知,抛物线经过(﹣3,0)、(1,0)、(0,3),
    设抛物线的解析式为:y=a(x+3)(x﹣1),
    代入点(0,3),
    则3=a(0+3)(0﹣1),
    解得:a=﹣1,
    则抛物线的解析式为:y=﹣(x+3)(x﹣1),
    整理得到:y=﹣x2﹣2x+3.
    【点睛】
    本题考查了二次函数解析式的求法,属于基础题,计算过程中细心即可.
    4、 (1)
    (2)
    (3),当时,S有最大值
    【解析】
    【分析】
    (1)先利用勾股定理求出,然后证明,得到,即,则,,即可得到;
    (2)延长交BC于D,由,得到,,则
    再由在∠ABC的角平分线上,,,得到,则,由此求解即可;
    (3)先求出当点正好落在BC上时,,然后讨论当△ABC与重叠部分即为,然后求出当点M恰好与B重合时,,讨论当时,如图3所示,△ABC与重叠部分即为四边形PMTS,当时,如图4所示,,△ABC与重叠部分即为△BPS,由此求解即可.
    (1)
    解:由旋转的性质可得,
    ∵在Rt△ABC,∠ACB=90°,AC=4,BC=3,
    ∴,
    ∵,,
    ∴,,
    ∴,
    ∴,即,
    ∴,,
    ∴;
    (2)
    解:如图所示,延长交BC于D,
    ∵∠ACB=90°,
    ∴AC⊥BC,
    ∵,
    ∴,,

    ∵在∠ABC的角平分线上,,,
    ∴,
    ∴,
    ∴,
    ∴,
    又∵,
    ∴,
    解得;

    (3)
    解:如图2所示,当点正好落在BC上时,
    ∴,
    ∵,
    ∴,
    ∴,即,
    ∴,
    又∵,
    ∴,
    解得,
    当,如图1所示,△ABC与重叠部分即为,
    ∴此时;

    当点M恰好与B重合时,此时,
    ∴,
    解得,
    当时,如图3所示,△ABC与重叠部分即为四边形PMTS,
    ∴,
    同理可证,
    ∴,即,,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴即,
    ∴,
    ∴,
    ∴;

    当时,如图4所示,,△ABC与重叠部分即为△BPS,
    同理可证,
    ∴,即,
    ∴,,
    ∴,
    ∴综上所述,
    ∴,
    ∴由二次函数的性质可知,
    ∴当时,S有最大值.

    【点睛】
    本题主要考查了相似三角形的性质与判定,勾股定理,角平分线的性质,熟知相关知识是解题的关键.
    5、 (1)c=6;b=2a+4
    (2)①最小值为−,最大值为20;②D(−3,−).
    【解析】
    【分析】
    (1)分别把 A(0,6)和B(-2,-2)代入解析式,可得c和b的值.
    (2)①当a=时,此函数表达式为y=x2+x+6,图象开口向上,由顶点坐标公式可知顶点坐标,根据二次函数的性质,当在顶点时函数值最小观察图象结合增减性,当x=2时,y有最大值.②令y=0,得C的坐标,设直线AC的解析式为y=kx+m,把A(0,6),C(-6,0)代入可得直线AC解析式,设D(x,x2+x+6)则F(x,x+6),得FD的值,设△FDM的周长为l,则l=DF+DM+MF=,当FD最大时,周长最大,根据二次函数的性质可得最大值.
    (1)
    把(0,6)代入y=ax2+bx+c,
    得c=6.
    把(-2,-2)代入y=ax2+bx+6,
    得4a-2b+6=-2,
    ∴b=2a+4.
    (2)
    ①当a=时,
    ∴,且c=6
    ∴函数表达式为y=x2+x+6=,图象开口向上.
    ∴顶点坐标为,

    ∵-4≤x≤2,
    ∴当x=−时,y的最小值为−.
    观察图象结合增减性,当x=2时,y有最大值,
    把x=2代入y=x2+x+6,
    y的最大值为20.
    ②∵y=x2+x+6,
    令y=0,则x=-6或x=−,
    ∵点C在左侧,
    ∴C(-6,0)
    设直线AC的解析式为y=kx+m,
    把A(0,6),C(-6,0)代入y=kx+m,得
    m=6-6k+m=0
    解得k=1,m=6,
    ∴y=x+6
    设D(x,x2+x+6)则F(x,x+6)
    ∴FD=x+6−(x2+x+6)=−x2−x,
    ∵OA=OC=6,∠AOC=90°,
    ∴∠COA=90°,
    ∵DF∥AO,
    ∴∠DFM=∠CAO=45°,
    DM=FM=FD,
    设△FDM的周长为l,
    则l=DF+DM+MF=
    当FD最大时,周长最大,
    又∵,
    又∵−<0且-6<x<0,
    ∴x=-3时,FD有最大值,即此刻△FDM周长最大.
    把x=-3代入y=x2+x+6,
    得y=−,
    ∴D(−3,−).
    【点睛】
    本题考查二次函数的应用,解本题要熟练掌握二次函数的性质,求二次函数的解析式、待定系数法,数形结合是解题关键.

    相关试卷

    数学九年级下册第30章 二次函数综合与测试精品练习: 这是一份数学九年级下册第30章 二次函数综合与测试精品练习,共23页。试卷主要包含了下列函数中,随的增大而减小的是等内容,欢迎下载使用。

    2020-2021学年第30章 二次函数综合与测试优秀达标测试: 这是一份2020-2021学年第30章 二次函数综合与测试优秀达标测试,共25页。试卷主要包含了若二次函数y=ax2+bx+c等内容,欢迎下载使用。

    数学九年级下册第30章 二次函数综合与测试随堂练习题: 这是一份数学九年级下册第30章 二次函数综合与测试随堂练习题,共30页。试卷主要包含了抛物线的对称轴是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map