初中数学冀教版九年级下册第30章 二次函数综合与测试课后练习题
展开
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试课后练习题,共29页。试卷主要包含了抛物线y=42+3的顶点坐标是等内容,欢迎下载使用。
九年级数学下册第三十章二次函数定向练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知二次函数,当时,x的取值范围是,且该二次函数图象经过点,则p的值不可能是( )
A.-2 B.-1 C.4 D.7
2、如图,二次函数的图象与x轴交于点A、B两点,与y轴交于点C;对称轴为直线,点B的坐标为,则下列结论:①;②;③;④,其中正确的结论有( )个.
A.1个 B.2个 C.3个 D.4个
3、二次函数的最大值是( )
A. B. C.1 D.2
4、将抛物线y=x2先向右平移3个单位长度,再向上平移5个单位长度,所得抛物线的解析式为( )
A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+3
5、关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根分别为-1和5,则二次函数y=ax2+bx+c(a≠0)的对称轴是( )
A.x=-3 B.x=-1 C.x=2 D.x=3
6、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有( )
A.2 个 B.3 个 C.4 个 D.5 个.
7、抛物线y=4(2x﹣3)2+3的顶点坐标是( )
A.(,3) B.(4,3) C.(3,3) D.(﹣3,3)
8、二次函数y=ax2+bx+c的部分图象如图所示,当x>0时,函数值y的取值范围是( )
A. B.y≤2 C.y<2 D.y≤3
9、若函数,则当函数y=15时,自变量的值是( )
A. B.5 C.或5 D.5或
10、将抛物线的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、这是小明在阅读一本关于函数的课外读物时看到的一段图文,则被墨迹污染的二次函数的二次项系数为______.由图像知,当x=﹣1时二次函数y=■x2+6x﹣5有最小值.
2、如图,在平面直角坐标系中,抛物线与轴交于,两点(点在点左侧),直线经过点;当时,直线分别与轴,抛物线交于,两点;当时,直线分别与轴,抛物线交于,两点;……;当(为正整数)时,直线分别与轴,抛物线交于,两点,则线段长为______.(用含的代数式表示)
3、已知二次函数y=x2+bx+3图象的对称轴为x=2,则b=________;顶点坐标是________.
4、二次函数的图像上横坐标与纵坐标相等的点的坐标为__________.
5、二次函数y=ax2+bx+4的图象如图所示,则关于x的方程a(x+1)2+b(x+1)=﹣4的根为______.
三、解答题(5小题,每小题10分,共计50分)
1、某商店销售甲、乙两种礼品,每件利润分别为20元、10元,每天卖出件数分别为40件、80件.为适应市场需求,该店决定降低甲种礼品的售价,同时提高乙种礼品的售价.售卖时发现,甲种礼品单价每降1元可多卖4件,乙种礼品单价每提高1元就少卖2件.若每天两种礼品共卖出140件,则每天销售的最大利润是多少?
(1)分析:设甲种礼品每件降低了x元,填写表格(用含x的式子表示,并化简);
调价后的每件利润
调价后的销售量
甲种礼品
①
乙种礼品
③
②
(2)解答:
2、如图1,抛物线y=ax2+bx+c(a>0)的顶点为M,平行于x的直线与抛物线交于点A,B,若△AMB为等腰直角三角形,则抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的“准碗形”,线段AB称为碗宽,点M到线段AB的距离称为碗高.
(1)抛物线y=x2对应的碗宽为 ;
(2)抛物线y=ax2(a>0)对应的碗宽为 ;抛物线y=a(x﹣2)2+3(a>0)对应的碗高为 ;
(3)已知抛物线y=ax2﹣4ax﹣(a>0)对应的碗高为3.
①求碗顶M的坐标;
②如图2,将“准碗形AMB”绕点M顺时针旋转30°得到“准碗形”.过点作x轴的平行线交准碗形于点C,点P是线段上的动点,过点P作y轴的平行线交准碗形A'MB'于点Q.请直接写出线段PQ长度的最大值.
3、借鉴我们已有研究函数的经验,探索函数y=|x2﹣2x﹣3|的图像与性质,研究过程如下,请补充完整.
(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:
x
…
﹣2
﹣1
0
1
2
3
4
…
y
…
m
0
3
n
3
0
5
…
其中,m= ,n= ;
(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出函数图像;
(3)观察函数图像:
①写出该函数的一条性质 ;
②已知函数y=x+4的图像如图所示根据函数图像,直接写出不等式x+4<|x2﹣2x﹣3|的解集.(近似值保留一位小数,误差不超过0.2)
4、如图,一名垒球运动员进行投球训练,站在点O开始投球,球出手的高度是2米,球运动的轨迹是抛物线,当球达到最高点E时,水平距离EG=20米,与地面的高度EF=6米,掷出的球恰好落在训练墙AB上B点的位置,AB=3米.
(1)求抛物线的函数关系式;
(2)求点O到训练墙AB的距离OA的长度.
5、在平面直角坐标系中,抛物线交轴于点,,过点的直线交抛物线于点.
(1)求该抛物线的函数表达式;
(2)若点是直线下方抛物线上的一个动点(不与点,重合),求面积的最大值;
(3)若点在抛物线上,点在直线上.试探究:是否存在点,,使得,同时成立?若存在,请直接写出点的坐标;若不存在,请说明理由.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据题意求得抛物线的对称轴,进而求得时,的取值范围,根据的纵坐标小于0,即可判断的范围,进而求解
【详解】
解:∵二次函数,当时,x的取值范围是,
∴,二次函数开口向下
解得,对称轴为
当时,,
经过原点,
根据函数图象可知,当,,
根据对称性可得时,
二次函数图象经过点,
或
不可能是4
故选C
【点睛】
本题考查了抛物线与一元一次不等式问题,求得抛物线的对称轴是解题的关键.
2、D
【解析】
【分析】
根据二次函数的对称性,以及参数a、b、c的意义即可求出答案.
【详解】
解:∵抛物线的对称轴为x=-1,
所以B(1,0)关于直线x=-1的对称点为A(-3,0),
∴AB=1-(-3)=4,故①正确;
由图象可知:抛物线与x轴有两个交点,
∴Δ=b2-4ac>0,故②正确;
由图象可知:抛物线开口向上,
∴a>0,
由对称轴可知:−0,故③正确;
当x=-1时,y=a-b+c0,∴a+b+c>0,故命题正确;
(5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;
故选C.
【点睛】
本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
7、A
【解析】
【分析】
根据顶点式的顶点坐标为求解即可
【详解】
解:抛物线的顶点坐标是
故选A
【点睛】
本题考查了二次函数顶点式的顶点坐标为,掌握顶点式求顶点坐标是解题的关键.
8、A
【解析】
【分析】
根据待定系数求解析式,进而求得顶点坐标,即的最大值,进而即可求得答案
【详解】
解:∵二次函数y=ax2+bx+c图象的对称轴为,与轴的交点为,与轴的一个交点为,
∴另一交点为
设抛物线解析式为,将点代入得
解得
抛物线解析式为
则顶点坐标为
当x>0时,函数值y的取值范围是
故选A
【点睛】
本题考查了待定系数法求抛物线解析式,化为顶点式是解题的关键.
9、D
【解析】
【分析】
根据题意,利用分类讨论的方法可以求得当函数y=15时,自变量x的值.
【详解】
解:当x<3时,
令2x2-3=15,
解得x=-3;
当x≥3时,
令3x=15,
解得x=5;
由上可得,x的值是-3或5,
故选:D.
【点睛】
本题考查了二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用分类讨论的方法解答.
10、B
【解析】
【分析】
由题意知,平移后的抛物线解析式为,将各选项中的横坐标代入,求出纵坐标并与各选项的纵坐标比较,纵坐标相同的即为正确答案.
【详解】
解:由题意知,平移后的抛物线解析式为
将代入解析式得,与A中点坐标不同,故不符合要求;
将代入解析式得,与B中点坐标相同,故符合要求;
将代入解析式得,与C中点坐标不同,故不符合要求;
将代入解析式得,与D中点坐标不同,故不符合要求;
故选B.
【点睛】
本题考查了二次函数图象的平移.解题的关键在于写出平移后的二次函数解析式.
二、填空题
1、
【解析】
【分析】
由图象可得:抛物线的对称轴为: 再利用抛物线的对称轴公式建立方程求解即可.
【详解】
解:由图象可得:抛物线的对称轴为:
而
解得:
故答案为:
【点睛】
本题考查的是二次函数的图象与性质,掌握“利用二次函数的对称轴方程求解未知系数的值”是解本题的关键.
2、
【解析】
【分析】
根据抛物线解析式结合题意可求出A点坐标,又点A在直线上,即可求出,即得出直线解析式.当时,直线解析式即为,即可求出此时的坐标.联立抛物线解析式和直线解析式,即可求出的坐标,再代入抛物线解析式,可求出其纵坐标.最后利用两点的距离公式就出结果即可.
【详解】
∵与x轴交于A,B两点(点A在点B左侧),
令,则,
解得:,.
∴A点坐标为(-1,0).
∵直线经过点A,
∴,
解得:,
∴该直线解析式为.
当时,直线解析式为,
令,则,
∴的坐标为(0,n).
联立,即,
解得:,.
∴的横坐标为n+1.
将代入中,得:,
∴的坐标为().
∴
故答案为:.
【点睛】
本题为二次函数与一次函数综合题,较难.考查二次函数图象与坐标轴的交点坐标,利用待定系数法求函数解析式,二次函数图象与一次函数图象的交点以及两点的距离公式.正确求出和的坐标是解答本题的关键.
3、 4 (2,7)
【解析】
【分析】
由对称轴公式即可求得b,把解析式化成顶点式即可求得顶点坐标.
【详解】
解:∵二次函数y=x2+bx+3图象的对称轴为x=2,
∴−=2,
∴b=4,
∴二次函数y=−x2+4x+3,
∵y=−x2+4x+3=−(x−2)2+7,
∴顶点坐标是(2,7),
故答案为:4,(2,7).
【点睛】
本题考查了二次函数的图象和性质,熟知对称轴公式和二次函数解析式的三种表现形式是解题的关键.
4、、
【解析】
【分析】
设函数的图象上,横坐标与纵坐标相等的点的坐标是,则,求出的值即可.
【详解】
解:设函数的图象上,横坐标与纵坐标相等的点的坐标是,则,即,
解得.
故符合条件的点的坐标是:、.
故答案为:、.
【点睛】
本题考查的是二次函数图象上点的坐标特点,解题的关键是掌握即二次函数图象上各点的坐标一定适合此函数的解析式.
5、x=-5或x=0##或
【解析】
【分析】
根据图象求出方程ax2+bx+4=0的解,再根据方程的特点得到x+1=-4或x+1=1,求出x的值即可.
【详解】
解:由图可知:二次函数y=ax2+bx+4与x轴交于(-4,0)和(1,0),
∴ax2+bx+4=0的解为:x=-4或x=1,
则在关于x的方程a(x+1)2+b(x+1)=-4中,
x+1=-4或x+1=1,
解得:x=-5或x=0,
即关于x的方程a(x+1)2+b(x+1)=-4的解为x=-5或x=0,
故答案为:x=-5或x=0.
【点睛】
本题考查的是抛物线与x轴的交点,能根据题意利用数形结合求出方程的解是解答此题的关键.
三、解答题
1、 (1)①,②,③
(2)每天获得的最大利润为元.
【解析】
【分析】
(1)设甲种礼品每件降低了x元,则调价后的销售量为原销量加上增加的销量,可得乙的销量为件,再求解乙调价后的利润即可;
(2)设每天的销售利润为元,再利用总利润等于甲礼品的利润加上乙礼品的利润,可得函数关系式,再利用二次函数的性质可得答案.
(1)
解:设甲种礼品每件降低了x元,则调价后的销售量为:件,
乙种礼品调价后的销售量为:件,
乙种礼品调价后的利润为:元,
填表如下:
调价后的每件利润
调价后的销售量
甲种礼品
乙种礼品
(2)
解:设每天的销售利润为元,则
当时,
(元)
所以每天获得的最大利润为元.
【点睛】
本题考查的是列代数式,二次函数的实际应用,理解题意,列出二次函数的关系式是解本题的关键.
2、 (1)4
(2),
(3)(2,-3),
【解析】
【分析】
(1)根据碗宽的定义以及等腰直角三角形的性质可以假设B(m,m),代入抛物线的解析式,求出A、B两点坐标即可解决问题.
(2)利用(1)中方法可求碗宽,根据等腰直角三角形可知碗高是碗宽的一半.
(3)①由碗高为3求出a,再求顶点坐标即可;②作QS⊥BP于S,找到PQ和QS的关系后即可解决问题.
(1)
解:根据碗宽的定义以及等腰直角三角形的性质可以假设B(m,m).
把B(m,m)代入y=x2,得,解得,m=2或0(舍去),
∴A(﹣2,2),B(2,2),
∴AB=4,即碗宽为4;
故答案为:4.
(2)
解:类似(1)设B(n,n),代入y=a x2,得,解得,n=或0(舍去),AB=,即碗宽为;
抛物线y=a(x﹣2)2+3是由抛物线y=ax2平移得到的,所以,它们的碗宽一样为,根据等腰直角三角形的性质,可知可知碗高是碗宽的一半,即;
故答案为:,.
(3)
解:①抛物线y=ax2﹣4ax﹣(a>0)对应的碗高为3.由(2)可知,
解得,,抛物线解析式为,化成顶点式为;
则M的坐标为(2,-3);
②如图,作QS⊥BP于S,由旋转可知∠PBO=30°,因为过点P作y轴的平行线交准碗形A'MB'于点Q,
∴PQ⊥OB,
∴∠QPB=60°,∠PQS=30°,
∴PQ=2PS,,
当QS等于碗高时,QS最大,此时PQ长度的最大,
由(2)可知QS最大为3,则,;
PQ长度的最大值为.
【点睛】
本题考查了二次函数的性质和直角三角形的性质,解题关键是准确理解题意,熟练运用二次函数的性质和直角三角形的性质求解.
3、 (1)5,4
(2)见解析
(3)①图象具有对称性,对称轴是直线x=1;②x<-1.6或x>4.3
【解析】
【分析】
(1)把x=-2和x=1分别代入y=|x2-2x-3|,即可求得;
(2)描点、连线画出图象即可;
(3)①根据图象即可求得;
②根据图象即可求得.
【小题1】
解:把x=-2代入y=|x2-2x-3|,得y=5,
∴m=5,
把x=1代入y=|x2-2x-3|,得y=4,
∴n=4,
故答案为:5,4;
【小题2】
如图所示;
【小题3】
①函数的性质:图象具有对称性,对称轴是直线x=1;
故答案为:图象具有对称性,对称轴是直线x=1;
②由图象可知,不等式x+4<|x2-2x-3|的解集为x<-1.6或x>4.3.
【点睛】
本题考查了二次函数图象和性质,二次函数图象上点的坐标特征,一次函数与一次不等式,注意利用数形结合的思想是解此题的关键.
4、 (1)抛物线的关系式为y=-0.01(x-20)2+6;
(2)点O到训练墙AB的距离OA的长度为(20+10)米.
【解析】
【分析】
(1)根据抛物线的顶点设关系式为y=a(x-20)2+6,再根据点C的坐标可得关系式;
(2)把y=3代入可得答案.
(1)
解:由题意得,顶点E(20,6)和C(0,2),
设抛物线的关系式为y=a(x-20)2+6,
∴2=a(0-20)2+6,
解得a=-0.01,
∴抛物线的关系式为y=-0.01(x-20)2+6;
(2)
(2)当y=3时,3=-0.01(x-20)2+6,
解得x1=20+10,x2=20-10(舍去),
答:点O到训练墙AB的距离OA的长度为(20+10)米.
【点睛】
本题考查了二次函数的实际应用,利用待定系数法得到抛物线的关系式是解题关键.
5、 (1)
(2)
(3)存在,.
【解析】
【分析】
(1)利用待定系数法即可求得答案;
(2)如图1,过点P作PD∥y轴,交x轴于点D,交BC于点E,作CF⊥PD于点F,连接PB,PC,设点P(m,m2-2m-3),则点E (m,,可得出PE=,再通过解方程组求出点C的坐标为,利用三角形面积公式和二次函数性质即可得出答案;
(3)设M(t,t2-2t-3),N(n,,作MG⊥y轴于点G,NH⊥x轴于H,证明△OGM≌△OHN(AAS),得出GM=NH,OG=OH,建立方程组求解即可.
(1)
将点,代入中,得:
解得,
∴该抛物线表达式为:
(2)
如图1,过点P作PD//y轴,交x轴于点D,交BC于点E,作于点F,连接PB,PC,
设点,则点,
∴
联立方程组
解得,,
∵点B的坐标为(3,0)
∴点C的坐标为
∴
∴
(其中)
∵
∴这个二次函数有最大值,
∴当时,的最大值为;
(3)
存在,
①如图②,
设,N(n,,
作MG⊥y轴于点G,NH⊥x轴于H,
∴∠OGM=∠OHN=90°,
∵OM=ON,∠MON=90°,∠GOH=90°,
∴∠MOG=∠NOH,
在△OGM与△OHN中,
,
∴△OGM≌△OHN(AAS),
∴GM=NH,OG=OH,
∴,
解得:,,
∴N1(3,0),N2,
②如图3,设M(t,t2﹣2t﹣3),N(n,,
作MG⊥x轴于点G,NH⊥x轴于H,
∴∠OGM=∠OHN=90°,
∵OM=ON,∠MON=90°,∠GOH=90°,
∴∠MOG=∠NOH,
在△OGM与△OHN中,
,
∴△OGM≌△OHN(AAS),
∴GM=NH,OG=OH,
∴,
解得:,
∴;
综上所述,点N的坐标为.
【点睛】
本题考查了待定系数法求函数的解析式、二次函数的图象与性质、几何图形的旋转、全等三角形的判定与性质及一元二次方程等知识点,运用数形结合思想、分类讨论思想及熟练掌握全等三角形判定和性质及二次函数性质是解题的关键.
相关试卷
这是一份2020-2021学年第30章 二次函数综合与测试精练,共32页。试卷主要包含了抛物线的顶点坐标为等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试达标测试,共24页。
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试同步训练题,共29页。试卷主要包含了对于抛物线下列说法正确的是等内容,欢迎下载使用。