开学活动
搜索
    上传资料 赚现金

    2022年冀教版九年级数学下册第三十章二次函数专题测试试题(含详细解析)

    2022年冀教版九年级数学下册第三十章二次函数专题测试试题(含详细解析)第1页
    2022年冀教版九年级数学下册第三十章二次函数专题测试试题(含详细解析)第2页
    2022年冀教版九年级数学下册第三十章二次函数专题测试试题(含详细解析)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中冀教版第30章 二次函数综合与测试当堂达标检测题

    展开

    这是一份初中冀教版第30章 二次函数综合与测试当堂达标检测题,共32页。试卷主要包含了已知平面直角坐标系中有点A,根据表格对应值等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数专题测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,在中,,,,是边上一动点,沿的路径移动,过点作,垂足为.设,的面积为,则下列能大致反映与函数关系的图象是( )

    A. B.
    C. D.
    2、将抛物线的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过( )
    A. B. C. D.
    3、已知二次项系数等于1的一个二次函数,其图象与x轴交于,两点,且过,两点.若,则ab的取值范围为( )
    A. B. C. D.
    4、如图,抛物线与轴交于点,对称轴为直线,则下列结论中正确的是( )

    A.
    B.当时,随的增大而增大
    C.
    D.是一元二次方程的一个根
    5、已知二次函数的图象如图所示,并且关于x的一元二次方程有两个不相等的实数根,下列结论:①;②;③;④.其中正确结论的个数有( )

    A.1个 B.2个 C.3个 D.4个
    6、已知平面直角坐标系中有点A(﹣4,﹣4),点B(a,0),二次函数y=x2+(k﹣3)x﹣2k的图象必过一定点C,则AB+BC的最小值是(  )
    A.4 B.2 C.6 D.3
    7、已知,是抛物线上的点,且,下列命题正确的是( )
    A.若,则 B.若,则
    C.若,则 D.若,则
    8、如图,在矩形ABCD中,,,动点P沿折线运动到点B,同时动点Q沿折线运动到点C,点P,Q在矩形边上的运动速度为每秒1个单位长度,点P,Q在矩形对角线上的运动速度为每秒2个单位长度.设运动时间为t秒,的面积为S,则下列图象能大致反映S与t之间函数关系的是( )

    A. B.
    C. D.
    9、根据表格对应值:
    x
    1.1
    1.2
    1.3
    1.4
    ax2+bx+c
    ﹣0.59
    0.84
    2.29
    3.76
    判断关于x的方程ax2+bx+c=2的一个解x的范围是( )
    A.1.1<x<1.2 B.1.2<x<1.3 C.1.3<x<1.4 D.无法判定
    10、抛物线,,的图象开口最大的是( )
    A. B. C. D.无法确定
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、请写出一个开口向下,与轴交点的纵坐标为3的抛物线的函数表达式__.
    2、将抛物线y=﹣2(x+2)2+5向右平移3个单位,再向下平移2个单位,所得抛物线的解析式为 _____.
    3、将二次函数y=﹣x2+2图象向下平移3个单位,得到的函数图象顶点坐标为_____.
    4、定义:直线y=ax+b(a≠0)称作抛物线y=ax2+bx(a≠0)的关联直线. 根据定义回答以下问题:
    (1)已知抛物线y=ax2+bx(a≠0)的关联直线为y=x+2, 则该抛物线的顶点坐标为_________;
    (2)当a=1时, 请写出抛物线y=ax2+bx与其关联直线所共有的特征(写出一条即可):___________________________________.
    5、若抛物线与轴交于原点,则的值为 __.
    三、解答题(5小题,每小题10分,共计50分)
    1、已知二次函数的图像经过点(1,4)和点(2,3).
    (1)求这个二次函数的表达式;
    (2)求该二次函数图像的顶点坐标.
    (3)当x在什么范围内时,y随x的增大而减小?
    2、在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(0,6)和B(﹣2,﹣2).

    (1)求c的值,并用含a的代数式表示b;
    (2)当a=时.
    ①求此函数的解析式,并写出当﹣4≤x≤2时,y的最大值和最小值;
    ②如图,抛物线y=ax2+bx+c与x轴的左侧交点为C,作直线AC,D为直线AC下方抛物线上一动点,与AC交于点F,作DM⊥AC于点M.是否存在点D使△DMF的周长最大?若存在,请求出D点的坐标;若不存在,请说明理由.
    3、已知抛物线y=x2+bx-3(b是常数)经过点A(-1,0).
    (1)求该抛物线的函数表达式和顶点坐标;
    (2)抛物线与x轴另一交点为点B,与y轴交于点C,平行于x轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3).
    ①求直线BC的解析式;
    ②若x3<x1<x2,结合函数的图象,求x1+x2+x3的取值范围.
    4、问题呈现:探究二次函数(其中,m为常数)的图像与一次函数的图像公共点.
    (1)问题可转化为:二次函数的图像与一次函数______的图像的公共点.
    (2)问题解决:在如图平面直角坐标系中画出的图像.

    (3)请结合(2)中图像,就m的取值范围讨论两个图像公共点的个数.
    (4)问题拓展:若二次函数(其中,m为常数)的图像与一次函数的图像有两个公共点,则m的取值范围为______.
    5、如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=﹣x2+bx+c经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点.

    (1)求抛物线的解析式及点C的坐标;
    (2)若点P在第二象限内,过点P作PD⊥x轴于D,交AB于点E.当点P运动到什么位置时,线段PE最长?此时PE等于多少?判断此时△ABP的形状,并证明你的结论.
    (3)在(2)的前提下,有一动点Q在抛物线上运动(线段AB的下方),当Q点运动到什么位置时,△ABQ的面积等于△ABP的面积.

    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    分两种情况分类讨论:当0≤x≤6.4时,过C点作CH⊥AB于H,利用△ADE∽△ACB得出y与x的函数关系的图象为开口向上的抛物线的一部分;当6.4<x≤10时,利用△BDE∽△BCA得出y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.
    【详解】
    解:∵,,,
    ∴BC=,
    过CA点作CH⊥AB于H,
    ∴∠ADE=∠ACB=90°,
    ∵,
    ∴CH=4.8,
    ∴AH=,
    当0≤x≤6.4时,如图1,

    ∵∠A=∠A,∠ADE=∠ACB=90°,
    ∴△ADE∽△ACB,
    ∴,即,解得:x=,
    ∴y=•x•=x2;
    当6.4<x≤10时,如图2,

    ∵∠B=∠B,∠BDE=∠ACB=90°,
    ∴△BDE∽△BCA,
    ∴,
    即,解得:x=,
    ∴y=•x•=;
    故选:D.
    【点睛】
    本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用分类讨论的思想求出y与x的函数关系式.
    2、B
    【解析】
    【分析】
    由题意知,平移后的抛物线解析式为,将各选项中的横坐标代入,求出纵坐标并与各选项的纵坐标比较,纵坐标相同的即为正确答案.
    【详解】
    解:由题意知,平移后的抛物线解析式为
    将代入解析式得,与A中点坐标不同,故不符合要求;
    将代入解析式得,与B中点坐标相同,故符合要求;
    将代入解析式得,与C中点坐标不同,故不符合要求;
    将代入解析式得,与D中点坐标不同,故不符合要求;
    故选B.
    【点睛】
    本题考查了二次函数图象的平移.解题的关键在于写出平移后的二次函数解析式.
    3、D
    【解析】
    【分析】
    由题意可设抛物线为y=(x-m)(x-n),则,再利用二次函数的性质可得答案.
    【详解】
    解:由已知二次项系数等于1的一个二次函数,
    其图象与x轴交于两点(m,0),(n,0),
    所以可设交点式y=(x-m)(x-n),
    分别代入,,



    ∵0<m<n<3,
    ∴0<≤4 ,0<≤4 ,
    ∵m<n,
    ∴ab不能取16 ,
    ∴0<ab<16 ,
    故选D
    【点睛】
    本题考查的是二次函数的图象与性质,根据二次函数的性质得到是解本题的关键.
    4、D
    【解析】
    【分析】
    根据二次函数图象的开口方向向下可得是负数,对称轴位于轴的右侧可得、异号;与轴的交点在正半轴可得是正数,根据二次函数的增减性可得选项错误,根据抛物线的对称轴结合与轴的一个交点的坐标可以求出与轴的另一交点坐标,也就是一元二次方程的根,从而得解.
    【详解】
    解:、根据图象,二次函数开口方向向下,则,对称轴位于轴的右侧可得、异号,即,故本选项结论错误;
    B、当时,随的增大而减小,故本选项结论错误;
    C、根据图象,抛物线与轴的交点在正半轴,则,故本选项结论错误;
    D、抛物线与轴的一个交点坐标是,对称轴是直线,
    设另一交点为,


    另一交点坐标是,
    是一元二次方程的一个根,
    故本选项结论正确.
    故选:D.
    【点睛】
    本题主要考查了二次函数图象与系数的关系,二次函数图象的增减性,抛物线与轴的交点问题,熟记二次函数的性质以及函数图象与系数的关系是解题的关键.
    5、B
    【解析】
    【分析】
    根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标等知识,逐个判断即可.
    【详解】
    解:抛物线与x轴有两个不同交点,因此b2-4ac>0,故①是错误的;
    由图象可知,当x=-1时,y=a-b+c>0,因此③是错误的;
    由开口方向可得,a>0,对称轴在y轴右侧,a、b异号,因此b-2
    因此④正确的,
    综上所述,正确的有2个,
    故选:B.
    【点睛】
    考查二次函数的图象和性质,掌握a、b、c的值决定抛物线的位置以及二次函数与一元二次方程的关系,是正确判断的前提.
    6、C
    【解析】
    【分析】
    将抛物线解析式变形求出点C坐标,再根据两点之间线段最短求出AB+BC的最小值即可.
    【详解】
    解:二次函数y=x2+(k﹣3)x﹣2k=(x-2)(x-1+k)-2
    ∴函数图象一定经过点C(2,-2)
    点C关于x轴对称的点的坐标为(2,2),连接,如图,



    故选:C
    【点睛】
    本题主要考查了二次函数的性质,两点之间线段最短以及勾股定理等知识,明确“两点之间线段最短”是解答本题的关键.
    7、A
    【解析】
    【分析】
    根据抛物线解析式可确定对称轴为,根据点与对称轴的距离的大小以及函数值的大小关系即可判断的符号,即开口方向
    【详解】
    解:∵的对称轴为,且
    ∴若,
    则离对称轴远,则抛物线的开口朝下,即,故A正确
    若,
    则离对称轴远,则抛物线的开口朝上,即,故C不正确
    对于B,D选项不能判断的符号
    故选A
    【点睛】
    本题考查了二次函数图象的性质,掌握的性质是解题的关键.
    8、D
    【解析】
    【分析】
    分别求出点P在AD,BD上,利用三角形面积公式构建关系式,可得结论.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴AD=BC=4,∠A=∠C=90°,AD∥BC,
    ∴∠ADB=∠DBC=60°,
    ∴∠ABD=∠CDB=30°,
    ∴BD=2AD=8,
    当点P在AD上时,PE⊥BQ

    S△PBQ =·BQ·PE
    =•(8-2t)•(4-t)•sin60°
    =(4-t)2(0<t<4),
    当点P在线段BD上时,QE’⊥BP

    S△PBQ=·BP·QE’
    =[12-2(t-4)]•(t-)sin60°
    =-t2+t-16(4<t≤8),
    观察图象可知,选项D满足条件,
    故选:D.
    【点睛】
    本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.
    9、B
    【解析】
    【分析】
    利用表中数据可知当x=1.3和x=1.2时,代数式ax2+bx+c的值一个大于2,一个小于2,从而判断当1.2<x<1.3时,代数式ax2+bx+c的值为2.
    【详解】
    解:当x=1.3时,ax2+bx+c=2.29,
    当x=1.2时,ax2+bx+c=0.84,
    ∵0.84<2<2.29,
    ∴方程解的范围为1.2<x<1.3,
    故选:B
    【点睛】
    本题考查估算一元二次方程的近似解,解题关键是观察函数值的变化情况.
    10、A
    【解析】
    【分析】
    先令x=1,求出函数值,然后再比较二次项系数的绝对值的大小即可解答.
    【详解】
    解:当x=1时,三条抛物线的对应点是(1,)(1,-3),(1,1),
    ∵||<|1|<|-3|,
    ∴抛物线开口最大.
    故选A.
    【点睛】
    本题主要考查了二次函数图象的性质,掌握二次函数解析式的二次项系数的绝对值越小,函数图象的开口越大.
    二、填空题
    1、
    【解析】
    【分析】
    首先根据开口向下得到二次项系数小于0,然后根据与轴的交点坐标的纵坐标为3得到值即可得到函数的解析式.
    【详解】
    解:开口向下,
    中,
    与轴的交点纵坐标为3,

    抛物线的解析式可以为:(答案不唯一).
    故答案为:(答案不唯一).
    【点睛】
    本题考查了二次函数的性质,解题的关键是熟知二次函数中各项系数的作用.
    2、y=﹣2(x﹣1)2+3
    【解析】
    【分析】
    按照“左加右减,上加下减”的规律,即可得出平移后抛物线的解析式.
    【详解】
    解:将抛物线y=﹣2(x+2)2+5向右平移3个单位,再向下平移2个单位,所得抛物线的解析式为:y=﹣2(x+2﹣3)2+5﹣2,即y=﹣2(x﹣1)2+3.
    故答案为:y=﹣2(x﹣1)2+3.
    【点睛】
    此题考查了抛物线的平移规律:左加右减,上加下减,熟记规律是正确解题的关键.
    3、(0,-1)
    【解析】
    【分析】
    直接根据“上加下减,左加右减”的原则进行解答即可.
    【详解】
    解:将二次函数y=-x2+2图象向下平移3个单位,
    得到y=-x2+2-3=-x2-1,
    顶点坐标为(0,-1),
    故答案为:(0,-1).
    【点睛】
    本题考查的是二次函数的图象与几何变换,熟知函数图象几何变换的法则是解答此题的关键.
    4、 (-1,-1) (1,1+b).
    【解析】
    【分析】
    (1)由关联直线的定义可求得a和b的值,可求得抛物线解析式,化为顶点式可求得其顶点坐标;
    (2)由关联直线的定义可求得关联直线解析式,可写出其共有特征.
    【详解】
    解:(1)∵抛物线y=ax2+bx(a≠0)的关联直线为y=x+2,
    ∴a=1,b=2,
    ∴抛物线解析式为y=x2+2x=(x+1)2-1,
    ∴抛物线顶点坐标为(-1,-1),
    故答案为:(-1,-1);
    (2)当a=1时,抛物线解析式为y=x2+bx,则关联直线解析式为y=x+b,
    ∴当x=1时,函数值都为1+b,
    ∴抛物线及其关联直线都过点(1,1+b),
    故答案为:过点(1,1+b).
    【点睛】
    本题主要考查二次函数的性质,理解好题目中所给关联直线的解析式与抛物线解析式之间的关系是解题的关键.
    5、-3
    【解析】
    【分析】
    根据函数图象经过原点时,,,代入即可求出的值.
    【详解】
    解:抛物线与轴交于原点,
    当时,,


    故答案为:.
    【点睛】
    本题考查了二次函数的性质,掌握函数图象经过原点,即当时,是解决问题的关键.
    三、解答题
    1、 (1)
    (2)
    (3)当时,y随x的增大而减小
    【解析】
    【分析】
    (1)将点(1,4)和(2,3)代入中,得,进行计算即可得;
    (2)将配方得,即可得;
    (3)根据二次函数的性质得即可得.
    (1)
    解:将点(1,4)和(2,3)代入中,得

    解得
    则该二次函数表达式为.
    (2)
    解:
    配方得:,
    则顶点坐标为(1,4).
    (3)
    解:根据二次函数的性质得,当时,y随x的增大而减小.
    【点睛】
    本题考查了二次函数,解题的关键是掌握二次函数的性质.
    2、 (1)c=6;b=2a+4
    (2)①最小值为−,最大值为20;②D(−3,−).
    【解析】
    【分析】
    (1)分别把 A(0,6)和B(-2,-2)代入解析式,可得c和b的值.
    (2)①当a=时,此函数表达式为y=x2+x+6,图象开口向上,由顶点坐标公式可知顶点坐标,根据二次函数的性质,当在顶点时函数值最小观察图象结合增减性,当x=2时,y有最大值.②令y=0,得C的坐标,设直线AC的解析式为y=kx+m,把A(0,6),C(-6,0)代入可得直线AC解析式,设D(x,x2+x+6)则F(x,x+6),得FD的值,设△FDM的周长为l,则l=DF+DM+MF=,当FD最大时,周长最大,根据二次函数的性质可得最大值.
    (1)
    把(0,6)代入y=ax2+bx+c,
    得c=6.
    把(-2,-2)代入y=ax2+bx+6,
    得4a-2b+6=-2,
    ∴b=2a+4.
    (2)
    ①当a=时,
    ∴,且c=6
    ∴函数表达式为y=x2+x+6=,图象开口向上.
    ∴顶点坐标为,

    ∵-4≤x≤2,
    ∴当x=−时,y的最小值为−.
    观察图象结合增减性,当x=2时,y有最大值,
    把x=2代入y=x2+x+6,
    y的最大值为20.
    ②∵y=x2+x+6,
    令y=0,则x=-6或x=−,
    ∵点C在左侧,
    ∴C(-6,0)
    设直线AC的解析式为y=kx+m,
    把A(0,6),C(-6,0)代入y=kx+m,得
    m=6-6k+m=0
    解得k=1,m=6,
    ∴y=x+6
    设D(x,x2+x+6)则F(x,x+6)
    ∴FD=x+6−(x2+x+6)=−x2−x,
    ∵OA=OC=6,∠AOC=90°,
    ∴∠COA=90°,
    ∵DF∥AO,
    ∴∠DFM=∠CAO=45°,
    DM=FM=FD,
    设△FDM的周长为l,
    则l=DF+DM+MF=
    当FD最大时,周长最大,
    又∵,
    又∵−<0且-6<x<0,
    ∴x=-3时,FD有最大值,即此刻△FDM周长最大.
    把x=-3代入y=x2+x+6,
    得y=−,
    ∴D(−3,−).
    【点睛】
    本题考查二次函数的应用,解本题要熟练掌握二次函数的性质,求二次函数的解析式、待定系数法,数形结合是解题关键.
    3、 (1)y=x2-2x-3,(1,−4)
    (2)①y=x−3;②
    【解析】
    【分析】
    (1)把A(-1,0)代入y=x2+bx-3其凷b得到抛物线解析式,然后把一般式配成顶点式得到抛物线的顶点坐标;
    (2)①解方程x2-2x-3=0得B(3,0),再确定C(0,-3),然后利用待定系数法求直线BC的解析式;
    ②如图,利用对称性得到x2-1=1-x1,则x1+x2=2,所以x1+x2+x3=2+x3,利用函数图象得到-1<x3<0,从而得到1<x1+x2+x3<2.
    (1)
    解:把A(-1,0)代入y=x2+bx-3得1-b-3=0,解得b=-2,
    ∴抛物线解析式为y=x2-2x-3,
    ∵y=(x-1)2-4,
    ∴抛物线的顶点坐标为(1,-4);
    (2)
    解:①当y=0时,x2-2x-3=0,解得x1=-1,x2=3,则B(3,0),
    当x=0时,y=x2-2x-3=-3,则C(0,-3),
    设直线BC的解析式为y=mx+n,
    把B(3,0),C(0,-3)代入得,解得,
    ∴直线BC的解析式为y=x-3;
    ②如图,

    x2-1=1-x1,
    ∴x1+x2=2,
    ∴x1+x2+x3=2+x3,
    ∵y3<-3,即x3-3<-3,
    ∴x3<0,
    ∵y=-4时,x-3=-4,解得x=-1,
    ∴-1<x3<0,
    ∴1<x1+x2+x3<2.
    【点睛】
    本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.
    4、 (1)
    (2)见解析
    (3)或或,两个图像公共点的个数为1个;时,两个图像公共点的个数为2个;或时,两个图像公共点的个数为0个;
    (4)
    【解析】
    【分析】
    (1)令,整理得:,可以转化为二次函数的图像与一次函数图像的公共点;
    (2)先在坐标轴上描出点,再连线即可;
    (3)通过数形结合的方式进行分类讨论;
    (4)通过数形结合的方式,分当时;当时;注意当时,要使有两个公共点,则满足,求解即可.
    (1)
    解:令,
    整理得:,
    可以转化为二次函数的图像与一次函数图像的公共点,
    故答案为:;
    (2)
    解:先在坐标轴上描出点,
    再连线即可,如下图:

    (3)
    解:如图:

    当时,与有一个交点,
    当时,与有两个交点,
    当时,与有一个交点,
    综上:或或,两个图像公共点的个数为1个;时,两个图像公共点的个数为2个;或时,两个图像公共点的个数为0个;
    (4)
    解:如下图:

    当时,(其中,m为常数)与有一个交点有一个公共点;
    当时,(其中,m为常数)与没有公共点;
    要使(其中,m为常数)与有两个公共点,则满足
    且,
    解得:且,

    故时,(其中,m为常数)与有两个公共点,
    故答案为:.
    【点睛】
    本题考查了二次函数与一次函数的综合,函数图象的交点问题,解题的关键是利用数形结合、分类讨论、转化的思想进行求解.
    5、 (1),C(1,0);
    (2)△ABP的形状为直角三角形,见解析;
    (3)Q的坐标为(﹣2+2,﹣2+2)或(﹣2﹣2,﹣2﹣2)
    【解析】
    【分析】
    (1)先通过直线求得与坐标轴的交点,然后应用待定系数法即可求得抛物线的解析式,进而求得抛物线与x轴的交点.
    (2)设出D的坐标(t,0),根据已知表示点E、P的坐标,根据PD⊥x轴即可求得线段PE关于t的解析式,配方即可得最大值,再算出此时的△ABP的三边即可得知其形状.
    (3)过P作AB的平行线l,通过平移得到直线l关于线段AB对称的直线l',再求得l'与抛物线交点即可得Q的坐标.
    (1)
    解:如图1,

    ∵直线y=x+4与x轴、y轴分别交于A、B两点,
    ∴A(﹣4,0),B(0,4),
    ∵抛物线y=﹣x2+bx+c经过A、B两点,
    ∴,
    解得,
    ∴抛物线的解析式为:y=﹣x2﹣3x+4,
    令y=0,则﹣x2﹣3x+4=0,
    解得x=﹣4或x=1,
    ∴C(1,0);
    (2)
    解:如图2,

    设D(t,0),
    ∴E(t,t+4),P(t,﹣t2﹣3t+4),
    ∴PE=﹣t2﹣3t+4﹣t﹣4=﹣(t+2)2+4,
    ∴当t=﹣2时,线段PE有最大值是4,此时P(﹣2,6);
    △ABP的形状为直角三角形,
    证明:∵AP2=(﹣2+4)2+(6﹣0)2=40,BA2=(﹣4﹣0)2+(0﹣4)2=32,BP2=(﹣2﹣0)2+(6﹣4)2=8,
    ∴BA2+BP2=AP2,
    ∴△ABP的形状为直角三角形;
    (3)
    解:如图,过P作AB的平行线l,

    设直线l的解析式为:y=x+m,
    代入(﹣2,6),得:6=﹣2+m,
    解得:m=8,即直线l:y=x+8,
    ∵直线AB:y=x+4,直线l:y=x+8,
    ∴将直线l向下平移8个单位即可得到直线l关于线段AB对称的直线l',
    ∴直线l':y=x,
    令y=x=﹣x2﹣3x+4,
    解得:x=﹣2+2或﹣2﹣2,
    ∴Q的坐标为(﹣2+2,﹣2+2)或(﹣2﹣2,﹣2﹣2).
    【点睛】
    此题是一次函数与二次函数的综合题,考查了求一次函数与坐标轴的交点,待定系数法求函数解析式,二次函数与坐标轴的交点,勾股定理的逆定理,二次函数的最值,一次函数的平移规律,一次函数与二次函数交点坐标,此题综合性比较强,较基础,综合掌握各知识点并应用是解题的关键.

    相关试卷

    初中数学冀教版九年级下册第30章 二次函数综合与测试优秀课时作业:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试优秀课时作业,共37页。试卷主要包含了抛物线的对称轴是,下列函数中,二次函数是,二次函数的最大值是,已知点,,都在函数的图象上,则等内容,欢迎下载使用。

    数学九年级下册第30章 二次函数综合与测试练习:

    这是一份数学九年级下册第30章 二次函数综合与测试练习,共36页。

    2020-2021学年第30章 二次函数综合与测试习题:

    这是一份2020-2021学年第30章 二次函数综合与测试习题,共28页。试卷主要包含了抛物线的对称轴是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map