冀教版九年级下册第30章 二次函数综合与测试复习练习题
展开
这是一份冀教版九年级下册第30章 二次函数综合与测试复习练习题,共38页。试卷主要包含了下列函数中,二次函数是等内容,欢迎下载使用。
九年级数学下册第三十章二次函数同步测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知二次函数,若时,函数的最大值与最小值的差为4,则a的值为( )
A.1 B.-1 C. D.无法确定
2、函数向左平移个单位后其图象恰好经过坐标原点,则的值为( )
A. B. C.3 D.或3
3、根据表格对应值:
x
1.1
1.2
1.3
1.4
ax2+bx+c
﹣0.59
0.84
2.29
3.76
判断关于x的方程ax2+bx+c=2的一个解x的范围是( )
A.1.1<x<1.2 B.1.2<x<1.3 C.1.3<x<1.4 D.无法判定
4、如图,要在二次函数的图象上找一点,针对b的不同取值,所找点M的个数,有下列三种说法:①如果,那么点M的个数为0;②如果.那么点M的个数为1;③如果,那么点M的个数为2.上述说法中正确的序号是( )
A.① B.② C.③ D.②③
5、如图,二次函数的图象与x轴交于点A、B两点,与y轴交于点C;对称轴为直线,点B的坐标为,则下列结论:①;②;③;④,其中正确的结论有( )个.
A.1个 B.2个 C.3个 D.4个
6、已知,是抛物线上的点,且,下列命题正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
7、一个球从地面竖直向上弹起时的速度为8米/秒,经过秒时球的高度为米,和满足公式:h=v0t-12gt2v0表示球弹起时的速度,表示重力系数,取米/秒,则球不低于3米的持续时间是( )
A.秒 B.秒 C.秒 D.1秒
8、已知二次函数y=x2﹣2x+m,点A(x1,y1)、点B(x2,y2)(x1<x2)是图象上两点,下列结论正确的是( )
A.若x1+x2<2,则y1>y2 B.若x1+x2>2,则y1>y2
C.若x1+x2<﹣2,则y1<y2 D.若x1+x2>﹣2,则y1>y2
9、下列函数中,二次函数是( )
A.y=﹣3x+5 B.y=x(4x﹣3)
C.y=2(x+4)2﹣2x2 D.y=
10、抛物线,,的图象开口最大的是( )
A. B. C. D.无法确定
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、把二次函数的图象关于轴对称后得到的图象的函数关系式为_________.
2、对于二次函数与,其自变量与函数值的两组对应值如下表所示,根据二次函数图象的相关性质可知______,______
x
﹣1
c
c
d
3、若抛物线与轴交于原点,则的值为 __.
4、将函数的图象向______平移______个单位长度,再向______平移______个单位长度,可以得到函数的图象.
5、如图,在平面直角坐标系中,,,且AC在x轴上,O为AC的中点.若抛物线与线段AB有两个不同的交点,则a的取值范围是______.
三、解答题(5小题,每小题10分,共计50分)
1、某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间t(天)之间的函数关系为p=,且t为整数,日销售量y(千克)与时间t(天)之间的函数关系如图所示.
(1)求日销售量y与时间t的函数表达式.
(2)哪一天的日销售利润最大?最大利润是多少?
2、如图,在平面直角坐标系中,抛物线与x轴交于点,点,与y轴交于点C.
(1)求该抛物线的解析式;
(2)点P为直线BC上方抛物线上的一点,过P点作轴,交BC于点D,点E在直线BC上,且四边形PEDF为矩形,求矩形PEDF周长的最大值以及此时点P的坐标;
(3)在(2)问的条件下,将抛物线沿射线EP方向平移个单位长度得到新抛物线,Q为平面内一点,将绕点Q顺时针方向旋转90°后得到,若的两个顶点恰好落在新抛物线上时,直接写出此时点的坐标,并把求其中一个点的坐标过程写出来.
3、已知直线y1=kx+1(k>0)与抛物线y2=x2.
(1)当﹣4≤x≤3时,函数y1与y2的最大值相等,求k的值;
(2)如图①,直线y1=kx+1与抛物线y2=x2交于A,B两点,与y轴交于F点,点C与点F关于原点对称,求证:S△ACF:S△BCF=AC:BC;
(3)将抛物线y2=x2先向上平移1个单位,再沿直线y1=kx+1的方向移动,使向右平行移动的距离为t个单位,如图②所示,直线y1=kx+1分别交x轴,y轴于E,F两点,交新抛物线于M,N两点,D是新抛物线与y轴的交点,当△OEF∽△DNF时,试探究t与k的关系.
4、如图,在平面直角坐标系中,抛物线与x轴交于B,C两点(C在B的左侧),与y轴交于点A,已知,.
(1)求抛物线的表达式;
(2)若点Q是线段AC下方抛物线上一点,过点Q作QD垂直AC交AC于点D,求DQ的最大值及此时点Q的坐标;
(3)点E是线段AB上一点,且;将抛物线沿射线AB的方向平移,当抛物线恰好经过点E时,停止运动,已知点M是平移后抛物线对称轴上的动点,N是平面直角坐标系中一点,直接写出所有使得以点A,B,M,N为顶点的四边形是菱形的点N的坐标,并把求其中一个点N的坐标的过程写出来.
5、已知在平面直角坐标系中,拋物线经过点、,顶点为点.
(1)求抛物线的表达式及顶点的坐标;
(2)联结,试判断与是否相似,并证明你的结论;
(3)抛物线上是否存在点,使得.如果存在,请求出点的坐标;如果不存在,请说明理由.
-参考答案-
一、单选题
1、C
【解析】
【分析】
分a>0或a<0两种情况讨论,求出y的最大值和最小值,即可求解;
【详解】
当a>0时,∵对称轴为x=,
当x=1时,y有最小值为2,当x=3时,y有最大值为4a+2,
∴4a+2-2=4.
∴a=1,
当a<0时,同理可得
y有最大值为2; y有最小值为4a+2,
∴2-(4a+2)=4,
∴a=-1,
综上,a的值为
故选:C
【点睛】
本题考查了二次函数的性质,二次函数图象上点的坐标特征等知识,利用分类思想解决问题是本题的关键.
2、C
【解析】
【分析】
把函数解析式整理成顶点式形式,再根据向左平移横坐标减表示出平移后的抛物线解析式,再把原点的坐标代入计算即可得解.
【详解】
解:,
向左平移个单位后的函数解析式为,
函数图象经过坐标原点,
,
解得.
故选:C.
【点睛】
本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化求解更加简便,要求熟练掌握平移的规律:左加右减,上加下减.
3、B
【解析】
【分析】
利用表中数据可知当x=1.3和x=1.2时,代数式ax2+bx+c的值一个大于2,一个小于2,从而判断当1.2<x<1.3时,代数式ax2+bx+c的值为2.
【详解】
解:当x=1.3时,ax2+bx+c=2.29,
当x=1.2时,ax2+bx+c=0.84,
∵0.84<2<2.29,
∴方程解的范围为1.2<x<1.3,
故选:B
【点睛】
本题考查估算一元二次方程的近似解,解题关键是观察函数值的变化情况.
4、B
【解析】
【分析】
把点M的坐标代入抛物线解析式,即可得到关于a的一元二次方程,根据根的判别式即可判断.
【详解】
解:∵点M(a,b)在抛物线y=x(2-x)上,
当b=-3时,-3=a(2-a),整理得a2-2a-3=0,
∵△=4-4×(-3)>0,
∴有两个不相等的值,
∴点M的个数为2,故①错误;
当b=1时,1=a(2-a),整理得a2-2a+1=0,
∵△=4-4×1=0,
∴a有两个相同的值,
∴点M的个数为1,故②正确;
当b=3时,3=a(2-a),整理得a2-2a+3=0,
∵△=4-4×3<0,
∴点M的个数为0,故③错误;
故选:B.
【点睛】
本题考查了二次函数图象上点的坐标特征,一元二次方程根的判别式,熟练掌握二次函数与一元二次方程的关系是解题的关键.
5、D
【解析】
【分析】
根据二次函数的对称性,以及参数a、b、c的意义即可求出答案.
【详解】
解:∵抛物线的对称轴为x=-1,
所以B(1,0)关于直线x=-1的对称点为A(-3,0),
∴AB=1-(-3)=4,故①正确;
由图象可知:抛物线与x轴有两个交点,
∴Δ=b2-4ac>0,故②正确;
由图象可知:抛物线开口向上,
∴a>0,
由对称轴可知:−0,故③正确;
当x=-1时,y=a-b+c
相关试卷
这是一份初中第30章 二次函数综合与测试练习,共26页。试卷主要包含了抛物线的对称轴是,同一直角坐标系中,函数和等内容,欢迎下载使用。
这是一份初中冀教版第30章 二次函数综合与测试复习练习题,共40页。试卷主要包含了抛物线y=﹣2,下列函数中,二次函数是等内容,欢迎下载使用。
这是一份初中数学第30章 二次函数综合与测试巩固练习,共29页。