搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷冀教版九年级数学下册第三十章二次函数专项训练试题(含解析)

    精品试卷冀教版九年级数学下册第三十章二次函数专项训练试题(含解析)第1页
    精品试卷冀教版九年级数学下册第三十章二次函数专项训练试题(含解析)第2页
    精品试卷冀教版九年级数学下册第三十章二次函数专项训练试题(含解析)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第30章 二次函数综合与测试同步测试题

    展开

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试同步测试题,共31页。试卷主要包含了下列函数中,二次函数是,已知点等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数专项训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、二次函数的最大值是( )
    A. B. C.1 D.2
    2、已知二次函数y=x2﹣2x+m,点A(x1,y1)、点B(x2,y2)(x1<x2)是图象上两点,下列结论正确的是(  )
    A.若x1+x2<2,则y1>y2 B.若x1+x2>2,则y1>y2
    C.若x1+x2<﹣2,则y1<y2 D.若x1+x2>﹣2,则y1>y2
    3、若点A(-1,y1),B(0,y2),C(1,y3)都在二次函数y=2x2+x-1的图象上,则y1,y2,y3的大小关系是( )
    A.y1<y2><y3 B.y2<y1<y3 C.y3<y1<y2 D.y3<y2<y1
    4、小明以二次函数的图象为灵感为“2017北京房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若,,则杯子的高为( )

    A.14 B.11 C.6 D.3
    5、下列函数中,二次函数是( )
    A.y=﹣3x+5 B.y=x(4x﹣3)
    C.y=2(x+4)2﹣2x2 D.y=
    6、将函数的图像向上平移1个单位,向左平移2个单位,则所得函数表达式是( )
    A. B.
    C. D.
    7、二次函数的自变量与函数值的部分对应值如下表:


    -3
    -2
    -1
    0
    1



    -11
    -3
    1
    1
    -3

    对于下列结论:①二次函数的图像开口向下;②当时,随的增大而减小;③二次函数的最大值是1;④若,是二次函数图像与轴交点的横坐标,则,其中,正确的是( )
    A.①② B.③④ C.①③ D.①②④
    8、已知点、在二次函数的图象上,当,时,.若对于任意实数、都有,则的范围是( ).
    A. B. C.或 D.
    9、关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根分别为-1和5,则二次函数y=ax2+bx+c(a≠0)的对称轴是( )
    A.x=-3 B.x=-1 C.x=2 D.x=3
    10、若二次函数y=a(x+b)2+c(a≠0)的图象,经过平移后可与y=(x+3)2的图象完全重合,则a,b,c的值可能为( )
    A.a=1,b=0,c=﹣2 B.a=2,b=6,c=0
    C.a=﹣1,b=﹣3,c=0 D.a=﹣2,b=﹣3,c=﹣2
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知抛物线,将此二次函数解析式用配方法化成的形式得__________,此抛物线经过两点A(-2,y1)和,则与的大小关系是_____________.
    2、这是小明在阅读一本关于函数的课外读物时看到的一段图文,则被墨迹污染的二次函数的二次项系数为______.由图像知,当x=﹣1时二次函数y=■x2+6x﹣5有最小值.

    3、如图,在平面直角坐标系中,抛物线y=a(x﹣1)2+k(a、k为常数)与x轴交于点A、B,与y轴交于点C,CD∥x轴,与抛物线交于点D.若点A的坐标为(﹣1,0),则线段OB与线段CD的长度和为_____.

    4、将抛物线y=﹣2(x+2)2+5向右平移3个单位,再向下平移2个单位,所得抛物线的解析式为 _____.
    5、已知二次函数的图象经过原点及点(,),且图象与x轴的另一交点到原点的距离为1,则该二次函数解析式为__________________.
    三、解答题(5小题,每小题10分,共计50分)
    1、抛物线y=ax2+bx+c(a<0)与x轴交于A,B两点(点A在点B的左侧),且OA=OB,与y轴交于点C.
    (1)求证:b=0;
    (2)点P是第二象限内抛物线上的一个动点,AP与y轴交于点D.连接BP,过点A作AQ∥BP,与抛物线交于点Q,且AQ与y轴交于点E.
    ①当a=﹣1时,求Q,P两点横坐标的差;(用含有c的式子来表示)
    ②求的值.
    2、已知二次函数.

    (1)把它配方成的形式,并写出它的开口方向、顶点的坐标;
    (2)作出函数的图象(列表描出五个关键点).


    0
    1
    2
    3
    4










    3、在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(0,6)和B(﹣2,﹣2).

    (1)求c的值,并用含a的代数式表示b;
    (2)当a=时.
    ①求此函数的解析式,并写出当﹣4≤x≤2时,y的最大值和最小值;
    ②如图,抛物线y=ax2+bx+c与x轴的左侧交点为C,作直线AC,D为直线AC下方抛物线上一动点,与AC交于点F,作DM⊥AC于点M.是否存在点D使△DMF的周长最大?若存在,请求出D点的坐标;若不存在,请说明理由.
    4、已知函数(为常数).
    (1)若图象经过点,判断图象经过点吗?请说明理由;
    (2)设该函数图象的顶点坐标为,当的值变化时,求与的关系式;
    (3)若该函数图象不经过第三象限,当时,函数的最大值与最小值之差为16,求的值.
    5、如图,抛物线经过点,,.

    (1)求抛物线的解析式;
    (2)若点为第三象限内抛物线上的一点,设的面积为,求的最大值并求出此时点的坐标;
    (3)设抛物线的顶点为,在轴上是否存在点,使得是直角三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.

    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    由图象的性质可知在直线处取得最大值,将代入解析式计算求解即可.
    【详解】
    解:由图象的性质可知,在直线处取得最大值
    ∴将代入中得
    ∴最大值为2
    故答案为:2.
    【点睛】
    本题考查了二次函数的最值.解题的关键在于掌握二次函数的图象与性质.
    2、A
    【解析】
    【分析】
    由二次函数y=x2﹣2x+m可知对称轴为x=1,当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离小,再结合抛物线开口方向,即可判断.
    【详解】
    解:∵二次函数y=x2﹣2x+m,
    ∴抛物线开口向上,对称轴为x=1,
    ∵x1<x2,
    ∴当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离大,
    ∴y1>y2,
    故选:A.
    【点睛】
    本题考查了二次函数的性质,灵活应用x1+x2与2的关系确定点A、点B与对称轴的关系是解决本题的关键.
    3、B
    【解析】
    【分析】
    由题意可知函数图象的对称轴、增减性;根据对称将A转化到对称轴的右侧,得到的坐标表示,然后比较三点横坐标的大小,进而判断三点纵坐标的大小即可.
    【详解】
    解:由知该函数图象开口向上,对称轴是直线,在对称轴的右侧,y随x的增加而增大
    ∴点A对称的点的坐标为


    故选B.
    【点睛】
    本题考查了二次函数的图象与性质.解题的关键在于掌握该函数图象与性质.
    4、B
    【解析】
    【分析】
    首先由y=2x2-4x+8求出D点的坐标为(1,6),然后根据AB=4,可知B点的横坐标为x=3,代入y=2x2-4x+8,得到y=14,所以CD=14-6=8,又DE=3,所以可知杯子高度.
    【详解】
    解:,
    抛物线顶点的坐标为,

    点的横坐标为,
    把代入,得到,


    故选:B.
    【点睛】
    本题主要考查了二次函数的应用,求出顶点D和点B的坐标是解决问题的关键.
    5、B
    【解析】
    【分析】
    根据二次函数的定义逐个判断即可.
    【详解】
    解:A.函数是一次函数,不是二次函数,故本选项不符合题意;
    B.是二次函数,故本选项符合题意;
    C.是一次函数,不是二次函数,故本选项不符合题意;
    D.不是二次函数,故本选项不符合题意;
    故选:B.
    【点睛】
    本题考查了二次函数的定义,解题的关键是掌握:形如、、为常数,的函数,叫二次函数.
    6、B
    【解析】
    【分析】
    由二次函数图象平移的规律即可求得平移后的解析式,再选择即可.
    【详解】
    解:将抛物线先向上平移1个单位,则函数解析式变为
    再将向左平移2个单位,则函数解析式变为,
    故选:B.
    【点睛】
    本题主要考查二次函数的图象变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.
    7、A
    【解析】
    【分析】
    根据待定系数法确定函数解析式,再根据函数的图象与性质求解即可.
    【详解】
    解:把(-1,1),(1,-3),(-2,-3)代入,得

    解得,
    ∴二次函数式为:

    ∴二次函数的图像开口向下,故①正确;

    ∴对称轴为直线
    ∴当时,随的增大而减小,故②正确;
    当时,二次函数的最大值是,故③错误;
    若,是二次函数图像与轴交点的横坐标,则,故④错误
    ∴正确的是①②
    故答案为①②
    【点睛】
    本题考查二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.
    8、A
    【解析】
    【分析】
    先根据二次函数的对称性求出b的值,再根据对于任意实数x1、x2都有y1+y2≥2,则二次函数y=x2-4x+n的最小值大于或等于1即可求解.
    【详解】
    解:∵当x1=1、x2=3时,y1=y2,
    ∴点A与点B为抛物线上的对称点,
    ∴,
    ∴b=-4;
    ∵对于任意实数x1、x2都有y1+y2≥2,
    ∴二次函数y=x2-4x+n的最小值大于或等于1,
    即,
    ∴c≥5.
    故选:A.
    【点睛】
    本题考察了二次函数的图象和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),其对称轴是直线:,顶点纵坐标是,抛物线上两个不同点P1(x1,y1),P2(x2,y2),若有y1=y2,则P1,P2两点是关于抛物线对称轴对称的点,且这时抛物线的对称轴是直线:.
    9、C
    【解析】
    【分析】
    一元二次方程的两个根分别是和5,则二次函数图象与轴的交点坐标为、,根据函数的对称性即可求解.
    【详解】
    解:一元二次方程的两个根分别是和5,
    则二次函数图象与轴的交点坐标为、,
    根据函数的对称性,函数的对称轴为直线,
    故选:C.
    【点睛】
    本题考查抛物线与轴的交点与对称轴的关系,解题的关键是掌握若抛物线与轴交点的横坐标为和,则抛物线的对称轴为.
    10、A
    【解析】
    【分析】
    根据二次函数的平移性质得出a不发生变化,即可判断a=1.
    【详解】
    解:∵二次函数y=a(x+b)2+c的图形,经过平移后可与y=(x+3)2的图形完全叠合,
    ∴a=1.
    故选:A.
    【点睛】
    此题主要考查了二次函数的平移性质,根据已知得出a的值不变是解题关键.
    二、填空题
    1、
    【解析】
    【分析】
    (1)利用配方法将二次函数的一般式转化为顶点式;(2)将与分别代入二次函数解析式中,计算出与的值,并比较大小.
    【详解】
    (1)解:,
    故答案为:.
    (2)当 时,
    当时,
    ∴ 与的大小关系是,
    故答案为:.
    【点睛】
    本题考查用配方法将二次函数的一般式转化为顶点式,以及二次函数的增减性,熟练掌握配方法是解决本题的关键.
    2、
    【解析】
    【分析】
    由图象可得:抛物线的对称轴为: 再利用抛物线的对称轴公式建立方程求解即可.
    【详解】
    解:由图象可得:抛物线的对称轴为:


    解得:
    故答案为:
    【点睛】
    本题考查的是二次函数的图象与性质,掌握“利用二次函数的对称轴方程求解未知系数的值”是解本题的关键.
    3、5
    【解析】
    【分析】
    先求出抛物线y= a(x-1)2+k(a、k为常数)的对称轴,然后根据A和B、C和D均关于对称轴直线x=1对称,分别求出B和D点的坐标,即可求出OB和CD的长.
    【详解】
    解:∵抛物线y=a(x-1)2+k(a、k为常数),
    ∴对称轴为直线x=1,
    ∵点A和点B关于直线x=1对称,且点A(-1,0),
    ∴点B(3,0),
    ∴OB=3,
    ∵C点和D点关于x=1对称,且点C(0,a+k),
    ∴点D(2,a+k),
    ∴CD=2,
    ∴线段OB与线段CD的长度和为5,
    故答案为5.
    【点睛】
    本题主要考查了二次函数的图象与性质,二次函数与与坐标轴交点的知识,解答本题的关键求出抛物线y=a(x-1)2+k(a、k为常数)的对称轴为x=1,此题难度不大.
    4、y=﹣2(x﹣1)2+3
    【解析】
    【分析】
    按照“左加右减,上加下减”的规律,即可得出平移后抛物线的解析式.
    【详解】
    解:将抛物线y=﹣2(x+2)2+5向右平移3个单位,再向下平移2个单位,所得抛物线的解析式为:y=﹣2(x+2﹣3)2+5﹣2,即y=﹣2(x﹣1)2+3.
    故答案为:y=﹣2(x﹣1)2+3.
    【点睛】
    此题考查了抛物线的平移规律:左加右减,上加下减,熟记规律是正确解题的关键.
    5、或
    【解析】
    【分析】
    设二次函数的解析式为y=ax2+bx+c(a≠0),由图象与x轴的另一交点到原点的距离为1可得到抛物线与x轴的另一交点坐标为(1,0)或(-1,0),然后分别把(0,0)、(1,0)、(-,-)或(0,0)、(-1,0)、(-,-)代入解析式中得到两个方程组,解方程组即可确定解析式.
    【详解】
    解:设二次函数的解析式为y=ax2+bx+c(a≠0),
    当图象与x轴的另一交点坐标为(1,0)时,
    把(0,0)、(1,0)、(-,-)代入得
    ,解得,
    则二次函数的解析式为;
    当图象与x轴的另一交点坐标为(-1,0)时,
    把(0,0)、(-1,0)、(-,-)代入得
    ,解得,
    则二次函数的解析式为y=x2+x.
    所以该二次函数解析式为y=-x2+x或y=x2+x.
    故答案为:y=-x2+x或y=x2+x.
    【点睛】
    本题考查了待定系数法求二次函数的解析式:先设二次函数的解析式为y=ax2+bx+c(a≠0),然后把二次函数图象上三个点的坐标代入得到关于a、b、c的三元一次方程组,解方程组求出a、b、c的值,从而确定二次函数的解析式.也考查了分类讨论思想的运用.
    三、解答题
    1、 (1)见解析
    (2)①2;②2.
    【解析】
    【分析】
    (1)利用根与系数的关系即可证明b=0;
    (2)①设出P点坐标,然后令c=t²,然后表示出A、B的坐标,先求出直线BP的解析式,即可得到直线AQ的解析式,然后联立抛物线与直线AQ解析式,求出Q点横坐标,即可求解;②同①的方法,令a=-s²,c=t²,设出P点坐标,分别求出D、E的坐标,代入计算即可求解.
    (1)
    解:设方程ax2+bx+c=0两根为x1,x2,
    ∵抛物线y=ax2+bx+c(a<0)与x轴交于A,B两点,且OA=OB,
    ∴x1=-x2,即x1+x2=0,
    ∵x1+x2=-,
    ∴-=0,
    ∵a<0,
    ∴b=0;
    (2)
    解:①当a=﹣1时,令c=t2,抛物线的解析式为y=-x2+t2,
    解方程-x2+t2=0,得:x1=t,x2=-t,
    ∴A(-t,0),B(t,0),
    设点P的坐标为(p,-p2+ t2),
    设直线PB的解析式为y=kx+m,
    ∴,解得:,
    ∴直线PB的解析式为y=x+,
    ∵AQ∥BP,
    设直线AQ的解析式为y=x+n,
    把A(-t,0)代入得:n=
    ∴直线AQ的解析式为y=,
    联立y=和y=-x2+ t2得:,
    整理得:,
    解得x1=-t,x2=p+2t,
    ∴点Q的横坐标为p+2t,
    ∴Q,P两点横坐标的差为p+2t-p=2t=2;
    ②令c=t2,a=-s²,抛物线的解析式为y=-s²x2+t2,
    解方程-s²x2+t2=0,得:x1=,x2=-,
    ∴A(-,0),B(,0),C(0,t2),
    设点P的坐标为(p,-s²p2+ t2),
    同理求得直线PB的解析式为y=x+,
    直线AQ的解析式为y=,
    令x=0,则y=,
    即点E的坐标为(0,),
    同理求得直线AP的解析式为y=,
    令x=0,则y=,
    即点D的坐标为(0,),
    ∴OD=,OE=,OC=,
    ∴.

    【点睛】
    本题是二次函数综合题,考查了待定系数法求函数解析式,解一元二次方程,一元二次方程的根与系数的关系等知识点,解答本题的关键是明确题意,找出所求问题需要的条件,画出相应的图形,利用数形结合的思想解答.
    2、 (1),开口向下,顶点的坐标为
    (2)见解析
    【解析】
    【分析】
    (1)按题目要求配方成顶点式,根据顶点式写出开口方向和顶点坐标;
    (2)根据解析式列表、描点、连线画二次函数图象
    (1)
    解:∵,
    ∴开口向下,顶点的坐标为
    (2)
    列表:


    0
    1
    2
    3
    4










    描点、连线如图,

    【点睛】
    本题考查了将二次函数化为顶点式,画二次函数图象,掌握顶点式的图象的性质是解题的关键.
    3、 (1)c=6;b=2a+4
    (2)①最小值为−,最大值为20;②D(−3,−).
    【解析】
    【分析】
    (1)分别把 A(0,6)和B(-2,-2)代入解析式,可得c和b的值.
    (2)①当a=时,此函数表达式为y=x2+x+6,图象开口向上,由顶点坐标公式可知顶点坐标,根据二次函数的性质,当在顶点时函数值最小观察图象结合增减性,当x=2时,y有最大值.②令y=0,得C的坐标,设直线AC的解析式为y=kx+m,把A(0,6),C(-6,0)代入可得直线AC解析式,设D(x,x2+x+6)则F(x,x+6),得FD的值,设△FDM的周长为l,则l=DF+DM+MF=,当FD最大时,周长最大,根据二次函数的性质可得最大值.
    (1)
    把(0,6)代入y=ax2+bx+c,
    得c=6.
    把(-2,-2)代入y=ax2+bx+6,
    得4a-2b+6=-2,
    ∴b=2a+4.
    (2)
    ①当a=时,
    ∴,且c=6
    ∴函数表达式为y=x2+x+6=,图象开口向上.
    ∴顶点坐标为,

    ∵-4≤x≤2,
    ∴当x=−时,y的最小值为−.
    观察图象结合增减性,当x=2时,y有最大值,
    把x=2代入y=x2+x+6,
    y的最大值为20.
    ②∵y=x2+x+6,
    令y=0,则x=-6或x=−,
    ∵点C在左侧,
    ∴C(-6,0)
    设直线AC的解析式为y=kx+m,
    把A(0,6),C(-6,0)代入y=kx+m,得
    m=6-6k+m=0
    解得k=1,m=6,
    ∴y=x+6
    设D(x,x2+x+6)则F(x,x+6)
    ∴FD=x+6−(x2+x+6)=−x2−x,
    ∵OA=OC=6,∠AOC=90°,
    ∴∠COA=90°,
    ∵DF∥AO,
    ∴∠DFM=∠CAO=45°,
    DM=FM=FD,
    设△FDM的周长为l,
    则l=DF+DM+MF=
    当FD最大时,周长最大,
    又∵,
    又∵−<0且-6<x<0,
    ∴x=-3时,FD有最大值,即此刻△FDM周长最大.
    把x=-3代入y=x2+x+6,
    得y=−,
    ∴D(−3,−).
    【点睛】
    本题考查二次函数的应用,解本题要熟练掌握二次函数的性质,求二次函数的解析式、待定系数法,数形结合是解题关键.
    4、 (1)经过,理由见解析
    (2)n=﹣m2﹣6m.
    (3)4或6
    【解析】
    【分析】
    (1)把点(﹣2,4)代入y=x2+bx+3b中,即可得到函数表达式,然后把点(2,4)代入判断即可;
    (2)利用顶点坐标公式得到﹣=m,=n,然后消去b可得到n与m的关系式.
    (3)由抛物线不经过第三象限可得b的取值范围,分别讨论x=﹣6与x=1时y为最大值求解.
    (1)
    解:经过,
    把点(﹣2,4)代入y=x2+bx+3b中得:
    4﹣2b+3b=4,
    解得b=0,
    ∴此函数表达式为:y=x2,
    当x=2时,y=4,
    ∴图象经过点(2,4);
    (2)
    解:∵抛物线函数y=x2+bx+3b(b为常数)的顶点坐标是 (m,n),
    ∴﹣=m,=n,
    ∴b=﹣2m,
    把b=﹣2m代入=n得n==﹣m2﹣6m.
    即n关于m的函数解析式为n=﹣m2﹣6m.
    (3)
    把x=0代入y=x2+bx+3b得y=3b,
    ∵抛物线不经过第三象限,
    ∴3b≥0,即b≥0,
    ∵y=x2+bx+3b=(x+)2﹣+3b,
    ∴抛物线顶点(﹣,﹣+3b),
    ∵﹣≤0,
    ∴当﹣+3b≥0时,抛物线不经过第三象限,
    解得b≤12,
    ∴0≤b≤12,﹣6≤﹣≤0,
    ∴当﹣6≤x≤1时,函数最小值为y=﹣+3b,
    把x=﹣6代入y=x2+bx+3b得y=36﹣3b,
    把x=1代入y=x2+bx+3b得y=1+4b,
    当36﹣3b﹣(﹣+3b)=16时,
    解得b=20(不符合题意,舍去)或b=4.
    当1+4b﹣(﹣+3b)=16时,
    解得b=6或b=﹣10(不符合题意,舍去).
    综上所述,b=4或6.
    【点睛】
    本题考查二次函数的综合应用,解题关键是掌握二次函数的性质,掌握二次函数与方程的关系,通过分类讨论求解.
    5、 (1)
    (2)当时,有最大值,此时点的坐标为
    (3)在轴上存在点,能够使得是直角三角形,此时点的坐标为或或或.
    【解析】
    【分析】
    (1)已知抛物线上的三点坐标,利用待定系数法可求出该二次函数的解析式;
    (2)过点作轴的垂线交于,过点作轴的垂线,交于点,先运用待定系数法求出直线的解析式,设点坐标为,根据的解析式表示出点的坐标,再根据就可以表示出的面积,运用顶点式就可以求出结论;
    (3)分三种情况进行讨论:①以为直角顶点;②以为直角顶点;③以为直角顶点;设点的坐标为,根据勾股定理列出方程,求出的值即可.
    (1)
    解:抛物线经过点,,,
    ,解得.
    抛物线的解析式为:;
    (2)
    如图,过点作轴的垂线交于,过点作轴的垂线,交于点.

    设直线的解析式为,由题意,得
    ,解得,
    直线的解析式为:.
    设点坐标为,则点的坐标为,



    当时,有最大值,此时点的坐标为;
    (3)
    解:在轴上是存在点,能够使得是直角三角形.理由如下:

    顶点的坐标为,


    设点的坐标为,分三种情况进行讨论:
    ①当为直角顶点时,如图3①,

    由勾股定理,得,
    即,
    解得,
    所以点的坐标为;
    ②当为直角顶点时,如图3②,

    由勾股定理,得,
    即,
    解得,
    所以点的坐标为;
    ③当为直角顶点时,如图3③,

    由勾股定理,得,
    即,
    解得或,
    所以点的坐标为或;
    综上可知,在轴上存在点,能够使得是直角三角形,此时点的坐标为或或或.
    【点睛】
    本题考查了二次函数综合题,涉及到用待定系数法求一次函数、二次函数的解析式,三角形的面积,二次函数的顶点式的运用,勾股定理等知识,解题的关键是运用数形结合、分类讨论及方程思想进行求解.

    相关试卷

    冀教版九年级下册第30章 二次函数综合与测试随堂练习题:

    这是一份冀教版九年级下册第30章 二次函数综合与测试随堂练习题,共29页。试卷主要包含了二次函数y=ax2﹣4ax+c等内容,欢迎下载使用。

    冀教版九年级下册第30章 二次函数综合与测试课时训练:

    这是一份冀教版九年级下册第30章 二次函数综合与测试课时训练,共31页。

    初中数学冀教版九年级下册第30章 二次函数综合与测试课时训练:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试课时训练,共29页。试卷主要包含了已知点,若点A等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map