


初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试精练
展开
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试精练,共28页。试卷主要包含了在平面直角坐标系中,点,已知点A,若平面直角坐标系中的两点A等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平面直角坐标系中,长方形的顶点的坐标分别为,点是的中点,点在上运动,当时,点的坐标是( )A. B. C. D.2、在平面直角坐标系中,点A的坐标为(﹣4,3),若AB∥x轴,且AB=5,当点B在第二象限时,点B的坐标是( )A.(﹣9,3) B.(﹣1,3) C.(1,﹣3) D.(1,3)3、点在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限4、在平面直角坐标系中,点(1,3)关于原点对称的点的坐标是 ( )A.( - 1, - 3) B.( - 1,3) C.(1, - 3) D.(3,1)5、已知点A(﹣2,a)和点B(2,﹣3)关于原点对称,则a的值为( )A.2 B.﹣2 C.3 D.﹣36、若点在第一象限,则a的取值范围是( )A. B. C. D.无解7、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是( )A.(-2,3)或(-2,-3) B.(-2,3)C.(-3,2)或(-3,-2) D.(-3,2)8、若平面直角坐标系中的两点A(a,3),B(1,b)关于y轴对称,则a+b的值是( )A.2 B.-2 C.4 D.-49、如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是( )A.(2020,0) B.(2021,1) C.(2021,0) D.(2022,﹣1)10、已知点P(m+3,2m+4)在x轴上,那么点P的坐标为( )A.(-1,0) B.(1,0) C.(-2,0) D.(2,0)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、点A(3,4)到x轴的距离是 _____.2、若点,关于x轴对称,则b的值为______.3、在平面直角坐标系中,点与点B关于y轴对称,则点B的坐标是________.4、在平面直角坐标系中,点A(m,﹣4)与点B(﹣5,n)关于y轴对称,则点(m,n)在第 _____象限.5、若点与点关于原点对称,则的值为______.三、解答题(10小题,每小题5分,共计50分)1、如图1所示,已知点,有以点为顶点的直角的两边分别与轴、轴相交于点.(1)试说明;(2)若点坐标为,点坐标为,请直接写出与之间的数量关系;(3)如图2所示,过点作线段,交轴正半轴于点,交轴负半轴于点,使得点为中点,且,绕着顶点旋转直角,使得一边交轴正半轴于点,另一边交轴正半轴于点,此时,和是否还相等,请说明理由;(4)在(3)条件下,请直接写出的值.2、已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向下平移5个单位长度得到的△A2B2C2;(3)若点B的坐标为(4,2),请写出点B经过两次图形变换的对应点B2的坐标.3、如图,在直角坐标系中,A(-1,5),B(-3,0),C(-4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)写出点A1 ,B1 ,C1 的坐标.4、如图是某地火车站及周围的简单平面图.(图中每个小正方形的边长代表1千米)(1)请以火车站所在的位置为坐标原点,以图中小正方形的边长为单位长度,建立平面直角坐标系,并写出体育场A、超市B、市场C、文化宫D的坐标;(2)在(1)中所建的坐标平面内,若学校E的位置是(﹣3,﹣3),请在图中标出学校E的位置.5、如图,在直角坐标系中,点A(3,3),B(4,0),C(0,2).(1)画出△ABC关于原点O对称的△A1B1C1.(2)求△A1B1C1的面积.6、如图,在平面直角坐标系中,点B的坐标是,点C的坐标为,CB交x轴负半轴于点A,过点B作射线,作射线CD交BM于点D,且(1)求证:点A为线段BC的中点.(2)求点D的坐标.7、如图,在平面直角坐标系中,直角的三个顶点分别是,,.(1)将以点为旋转中心顺时针旋转,画出旋转后对应的并写出各个顶点坐标;(2)分别连结,后,求四边形的面积.8、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立如图所示的平面直角坐标系后,的顶点均在格点上,且坐标分别为:A(3,3)、B(-1,1)、C(4,1).依据所给信息,解决下列问题:(1)请你画出将向右平移3个单位后得到对应的;(2)再请你画出将沿x轴翻折后得到的;(3)若连接、,请你直接写出四边形的面积.9、如图,图中的小方格都 是边长为1的正方形,△ABC的顶点坐标为A、B、C三点.(1)写出顶点A、B、C三点的坐标; (2)请在图中画出△ABC关于y轴对称的图形△A′B′C′; (3)写出点B′和点C′的坐标.10、如图,在正方形网格中,每个小正方形的边长均为1,ABC的三个顶点都在格点上,结合所给的平面直角坐标系,解答下列问题:(1)请画出ABC关于x轴成轴对称的A1B1C1,并写出点A1的坐标;(2)请画出ABC关于点O成中心对称的A2B2C2,并写出点A2的坐标;(3)A1B1C1与A2B2C2关于某直线成轴对称吗?若是,请写出对称轴;若不是,请说明理由. -参考答案-一、单选题1、A【分析】由点是的中点,可得出点D的坐标,当,由等腰三角形的性质即可得出点P的坐标【详解】解:过点P作PM⊥OD于点M,∵长方形的顶点的坐标分别为,点是的中点,∴点D(5,0)∵,PM⊥OD,∴OM=DM即点M(2.5,0)∴点P(2.5,4),故选:A【点睛】此题主要考查了坐标与图形的性质和等腰三角形的性质,熟练掌握等腰三角形“三线合一”的性质是解题的关键.2、A【分析】根据平行及线段长度、点B在第二象限,可判断点B一定在点A的左侧,且两个点纵坐标相同,再由线段长即可确定点B的坐标.【详解】解:∵轴,且,点B在第二象限,∴点B一定在点A的左侧,且两个点纵坐标相同,∴,即,故选:A.【点睛】题目主要考查坐标系中点的坐标,理解题意,掌握坐标系中点的特征是解题关键.3、C【分析】根据各象限内点的坐标特征解答.【详解】解:点的横坐标小于0,纵坐标小于0,点所在的象限是第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).4、A【分析】由两个点关于原点对称时,它们的坐标符号相反特点进行求解即可.【详解】解:∵两个点关于原点对称时,它们的坐标符号相反,∴点关于原点对称的点的坐标是.故选:A.【点睛】题目考查了关于原点对称的点的坐标,解题关键是掌握好关于原点对称点的坐标规律.5、C【分析】根据两个点关于原点对称时,它们横、纵坐标均互为相反数,即可求出a的值.【详解】解:∵点A(﹣2,a)和点B(2,﹣3)关于原点对称,∴a=3,故选:C.【点睛】此题考查的是关于原点对称的两点坐标关系,掌握关于原点对称的两点坐标关系:横、纵坐标均互为相反数是解决此题的关键.6、B【分析】由第一象限内的点的横纵坐标都为正数,可列不等式组,再解不等式组即可得到答案.【详解】解: 点在第一象限, 由①得: 由②得: 故选B【点睛】本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.7、A【分析】根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.【详解】解:∵点P在y轴左侧,∴点P在第二象限或第三象限,∵点P到x轴的距离是3,到y轴距离是2,∴点P的坐标是(-2,3)或(-2,-3),故选:A.【点睛】此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.8、A【分析】直接利用关于y轴对称点的性质,横坐标互为相反数,纵坐标相同,进而得出答案.【详解】解:依题意可得a=-1,b=3∴a+b=2故选A.【点睛】此题主要考查了关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题关键.9、C【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.【详解】解:半径为1个单位长度的半圆的周长为2π×1=π,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P每秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2021÷4=505余1,∴P的坐标是(2021,1),故选:C.【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.10、B【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.【详解】解:∵点P(m+3,2m+4)在x轴上,∴2m+4=0,解得:m=-2,∴m+3=-2+3=1,∴点P的坐标为(1,0).故选:B.【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.二、填空题1、4【分析】根据点到x轴的距离等于纵坐标的绝对值解答即可.【详解】解:点A(3,4)到x轴的距离为4,故答案为:4.【点睛】本题考查了点到坐标轴的距离,掌握点到x轴的距离等于纵坐标的绝对值是解题的关键.2、【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,−y),据此即可求解.【详解】解:依题意可得a=-4,b=-3,故答案为:-3.【点睛】本题考查了关于x轴对称的点的坐标,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.3、(-2,4)【分析】根据点(x,y)关于y轴对称的点的坐标为(-x, y)进行解答即可.【详解】解:点A(2,4)关于y轴对称的点B的坐标是(-2,4),故答案为:(-2,4).【点睛】本题考查关于y轴对称的点的坐标,熟知关于y轴对称的点的坐标变换规律是解答的关键.4、四【分析】先根据关于y轴对称的点的特征:纵坐标相同,横坐标互为相反数求出m、n的值,再根据每个象限内点的坐标特点求解即可.【详解】解:∵点A(m,﹣4)与点B(﹣5,n)关于y轴对称,∴m=5,n=-4,∴点(m,n)即点(5,-4)在第四象限,故答案为:四.【点睛】本题主要考查了关于y轴对称的点的坐标特征,根据点的坐标判断点所在的象限,熟练掌握关于y轴对称的点的坐标特征是解题的关键.5、-4【分析】根据关于原点对称的点的横坐标和纵坐标都互为相反数解答.【详解】解:由点与点关于原点对称,可得n=1,,∴故答案为:﹣4.【点睛】本题考查了关于原点对称的点的坐标的特征:横坐标和纵坐标都互为相反数.三、解答题1、(1)见解析;(2);(3)相等,见解析;(4)9【分析】(1)过点作轴于点,轴于点,证明即可得到结论;(2),由可得结论;(3)连接OP,根据题意可得,,从而得,再证明S可得,进一步可得结论;(4)过点P作PQ⊥y轴,得PQ=OQ=3,根据题意可得,故BQ=3,从而可求出,由(3)得,从而可得【详解】解:(1)过点作轴于点,轴于点,∵点坐标为∴又∵∴∵∴∴(2)由(1)知∴ ∵点坐标为,点坐标为,且 ∴ ∴ ∴(3)相等,理由:连接,如图,∵,且,为中点∴,∴∵∴又∵∴在和中 ∴∴(4)由(3)知∴ 过点P作PQ⊥y轴于点Q,∵P(3,-3)∴PQ=OQ=3∵ ∴ ∴ ∴ ∴ ∴=9【点睛】本题主要考查了坐标与图形的性质,全等三角形的判定与性质,等腰直角三角形的性质等知识,找出判定三角形全等的条件是解答本题的关键2、(1)见解析;(2)见解析;(3)(﹣4,﹣3)【分析】(1)分别作出A,B,C 的对应点A1,B1,C1即可.(2)分别作出点A1,B1,C1的对应点A2,B2,C2即可.(3)根据所画图形,直接写出坐标即可.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)点B2的坐标为(﹣4,﹣3).【点睛】本题考查作图——轴对称变换,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.3、(1)见解析;(2)(1,5),(3,0),(4,3)【分析】(1)根据对称性即可在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)结合(1)即可写出点A1,B1,C1的坐标.【详解】解:(1)如图,△A1B1C1即为所求;(2)A1(1,5),B1(3,0),C1(4,3);故答案为:(1,5),(3,0),(4,3).【点睛】本题考查了作图-轴对称变换,解决本题的关键是掌握轴对称性质.关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标相同.4、(1)见解析,体育场A的坐标为(﹣4,3)、超市B的坐标为(0,4)、市场C的坐标为(4,3)、文化宫D的坐标为(2,﹣3);(2)见解析【分析】(1)以火车站所在的位置为坐标原点,建立平面直角坐标系,即可表示出体育场A、超市B市场C、文化宫D的坐标.(2)根据点的坐标的意义描出点E.【详解】解:(1)平面直角坐标系如图所示,体育场A的坐标为(﹣4,3)、超市B的坐标为(0,4)、市场C的坐标为(4,3)、文化宫D的坐标为(2,﹣3).(2)如图,点E即为所求.【点睛】本题考查了坐标确定位置,主要是对平面直角坐标系的定义和点的坐标的写法的考查,是基础题.5、(1)图形见解析;(2)5【分析】(1)根据关于原点对称的点的坐标特征,依次求出的坐标即可;(2)利用割补法求△A1B1C1面积.【详解】(1)∵∴△ABC关于原点O对称的△A1B1C1位置如图:(2)【点睛】此题考查了中心对称的知识,解答本题的关键是根据关于原点对称的点的坐标特征得到各点的对应点.6、(1)证明见解析,(2)(8,2).【分析】(1)过点C作CQ⊥OA于Q,证△CQA≌△BOA,即可证明点A为线段BC的中点;(2)过点C作CR⊥OB于R,过点D作DS⊥OB于S,证△CRB≌△BSD,根据全等三角形对应边相等即可求点D的坐标.【详解】(1)证明:过点C作CQ⊥OA于Q,∵点B的坐标是,点C的坐标为,∴CQ=OB=4,∵∠CQO=∠BOA=90°,∠CAQ=∠BAO,∴△CQA≌△BOA,∴CA=AB,∴点A为线段BC的中点.(2)过点C作CR⊥OB于R,过点D作DS⊥OB于S,∵,∴∠CRB=∠DSB=∠CBD=90°,∴∠CBR+∠SBD=90°,∠SDB+∠SBD=90°,∴∠CBR=∠SDB,∵,∴∠BCD=∠BDC=45°,∴CB=DB,∴△CRB≌△BSD,∴CR=SB,RB=DS,∵点B的坐标是,点C的坐标为,∴CR=SB=6,RB=DS=8,∴OS=SB-OB=2,点D的坐标为(8,2).【点睛】本题考查了全等三角形的判定与性质和点的坐标,解题关键是树立数形结合思想,恰当作辅助线,构建全等三角形.7、(1)图见解析,,,;(2)9【分析】利用网格特点和旋转的性质画出、、的对应点、、,从而得到;利用两个梯形的面积和减去一个三角形的面积计算四边形的面积.【详解】解:如图,为所作,各个顶点坐标为,,;如图,四边形的面积.【点睛】本题考查了作图旋转变换,根据旋转的性质画出转后对应的是解决问题的关键.8、(1)见解析;(2)见解析;(3)16【分析】(1)利用平移的性质得出对应点位置进而得出答案;(2)利用关于x轴对称的点的坐标找出A2、B2、C2的坐标,然后描点即可;(3)运用割补法求解即可【详解】解:(1)如图,即为所作;(2)如图,即为所作;(3)四边形的面积==16【点睛】此题主要考查了轴对称变换以及平移变换和四边形面积求法,根据题意得出对应点位置是解题关键.9、(1)A( 0, -2 ),B( 3 , -1 ),C( 2, 1 );(2)图见解析;(3)(-3,-1 ),(-2,1 )【分析】(1)根据三角形在坐标中的位置可得;(2)分别作出点A、B、C关于y轴的对称点,再顺次连接可得;(3)利用点的坐标的表示方法求解.【详解】解:(1)△ABC的各顶点坐标:A(0,-2)、B(3,-1)、C(2,1);(2)△A′B′C′如图所示:(3)(-3,-1 ),(-2,1 ).【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键.10、(1)画图见解析,点A1的坐标;(-4,3);(2)画图见解析,点A2的坐标(4,3);(3)△A1B1C1与△A2B2C2关于y轴成轴对称,对称轴为y轴.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可;(2)分别作出A,B,C的对应点A2,B2,C2即可;(3)根据轴对称的定义判断即可.【详解】解:(1)如图,△A1B1C1即为所求,点A的对应点A1的坐标;(-4,3);(2)如图,△A2B2C2即为所求,点A2的坐标(4,3);(3)△A1B1C1与△A2B2C2关于y轴成轴对称,对称轴为y轴.【点睛】本题考查作图-旋转变换,轴对称变换,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.注意:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
相关试卷
这是一份初中沪教版 (五四制)第十五章 平面直角坐标系综合与测试随堂练习题,共29页。试卷主要包含了点A关于y轴的对称点A1坐标是,在平面直角坐标系中,点A等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后测评,共26页。试卷主要包含了平面直角坐标系中,将点A,根据下列表述,能确定位置的是,点A的坐标为,则点A在,已知点A,在平面直角坐标系中,点等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试复习练习题,共29页。试卷主要包含了点A个单位长度.,已知A,在平面直角坐标系中,点等内容,欢迎下载使用。