![精品试卷冀教版八年级数学下册第十八章数据的收集与整理专项测试试题(无超纲)01](http://img-preview.51jiaoxi.com/2/3/12720452/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷冀教版八年级数学下册第十八章数据的收集与整理专项测试试题(无超纲)02](http://img-preview.51jiaoxi.com/2/3/12720452/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷冀教版八年级数学下册第十八章数据的收集与整理专项测试试题(无超纲)03](http://img-preview.51jiaoxi.com/2/3/12720452/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021学年第十八章 数据的收集与整理综合与测试同步测试题
展开八年级数学下册第十八章数据的收集与整理专项测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、要调查下列问题,适合采用普查的是( )
A.中央电视台《开学第一课》的收视率 B.某城市居民6月份人均网上购物的次数
C.即将发射的气象卫星的零部件质量 D.银川市中小学生的视力情况
2、为了解某校八年级900名学生的体重情况,从中随机抽取了100名学生的体重进行统计分析.在这个问题中,样本是指( )
A.100 B.被抽取的100名学生
C.900名学生的体重 D.被抽取的100名学生的体重
3、某校为了解全校1000名学生的视力情况,抽查了200名学生的视力进行统计分析.在这个问题中,下列说法:①这1000多学生的视力的全体是总体;②每名学生是个体;③200名学生是总体的一个样本;④样本容量是200.其中说法正确的有( )
A.①②③④ B.①②④ C.①③④ D.①④
4、成都市2021年约有13.15万名考生参加中考,为了了解这13.15万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,以下说法正确的有( )个
①这种调查采用了抽样调查的方式;
②13.15万名考生是总体;
③1000名考生是总体的一个样本;
④每名考生的数学成绩是个体.
A.0 B.2 C.3 D.4
5、下列适合于抽样调查的是( )
A.某班学生男女比例 B.铅笔使用寿命
C.飞机乘客安全检查 D.载人航天飞船零部件检查
6、下列采用的调查方式中,不合适的是
A.了解一批灯泡的使用寿命,采用普查
B.了解神舟十二号零部件的质量情况,采用普查
C.了解单县中学生睡眠时间,采用抽样调查
D.了解中央电视台《开学第一课》的收视率,采用抽样调查
7、党的十八大以来,全国各地认真贯彻精准扶贫方略,扶贫工作力度、深度和精准度都达到了新的水平,为2020年全面建成小康社会的战略目标打下了坚实基础.如图是根据近几年中国农村贫困人口数量(单位:万人)及分布情况绘制的统计图表的一部分.
年份 人数 地区 | 2017 | 2018 | 2019 |
东部 | 300 | 147 | 47 |
中部 | 1112 |
| 181 |
西部 | 1634 | 916 | 323 |
(以上数据来源于国家统计局)
根据统计图表提供的信息,下面推断不正确的是( )
A.2018年中部地区农村贫困人口为597万人
B.年,农村贫困人口减少数量逐年增多
C.年,农村贫困人口数量都是东部最少
D.年,每年西部农村贫困人口减少数量都最多
8、如图,有100名学生参加两次科技知识测试,条形图显示两次测试的分数分布情况.根据条形图提供的信息可知,两次测试最低分在第______ 次测试中,第____次测试较容易( )
A.一,二 B.二,一 C.一,一 D.二,二
9、如图为成都市部分区县森林覆盖率统计图.其中,森林覆盖率低于的区县有( )
A.1个 B.2个 C.3个 D.4个
10、为了反映今天的气温变化情况,你认为选择哪种统计图最恰当( )
A.频数直方图 B.条形统计图 C.扇形统计图 D.折线统计图
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、为了了解某县七年级8800名学生的视力情况,从中抽查了500名学生的视力情况进行统计分析,这个问题中的样本容量是______________.
2、在一个不透明的袋子中,装有黑球和白球共30个,这些球除颜色外都相同,搅匀后从中任意摸出一个球记下颜色,再把它放回袋子中,不断重复实验,统计结果显示,随着实验次数越来越大,摸到黑球的频率逐渐稳定在0.4左右,则据此估计袋子中大约有白球___个.
3、在数3141592653中,偶数出现的频率是______.
4、对某班同学的身高进行统计(单位:厘米),频数分布表中,165.5-170.5这一组学生人数是12,频率是0.24,则该班共有________名学生;155.5-160.5这一组学生人数是8,频率是________.
5、某校学生自主建立了一个学习用品义卖社团,已知八年级200名学生义卖所得金额的频数分布直方图如图所示,那么40~50元这个小组的组频率是__________.
三、解答题(5小题,每小题10分,共计50分)
1、某校兴趣小组想了解球的弹性大小,准备了A、B两个球,分别让球从不同高度自由下落到地面,测量球的反弹高度,记录数据后绘制成如图所示的统计图.
请你根据图中提供的信息解答下列问题:
(1)当起始高度为80cm时,B球的反弹高度是起始高度的____________%.
(2)比较两个球的反弹高度的变化情况,____________球弹性大.(填“A”或“B”)
(3)下列的推断合理的是____________(只填序号)
①根据统计图预测,如果下落的起始高度继续增加,A球的反弹高度可能会继续增加;
②从统计图上看,两球的反弹高度不会超过它们的起始高度.
2、吴老师为了解本班学生的数学学习情况,对某次数学考试成绩(成绩取整数,满分为100分)作了统计,绘制成如下频数分布表和频数分布直方图.
分组 | 49.5-59.5 | 59.5-69.5 | 69.5-79.5 | 79.5-89.5 | 89.5-100.5 | 合计 |
频数 | 3 |
| 10 | 26 | 6 |
|
频率 | 0.06 | 0.10 | 0.20 | 0.52 |
| 1.00 |
请你根据图表提供的信息,解答下列问题:
(1)补全频数分布表和频数分布直方图;
(2)如果用扇形统计图表示这次数学考试成绩,那么成绩在69.5~79.5范围内的扇形圆心角的度数为________度.
3、你喜欢气球吗?你喜欢什么颜色的气球?你能进行一次调查,以帮助气球生产厂家确定各种颜色气球的生产比例吗?几人组成一个调查小组.
(1)讨论下面几个问题:调查的目的、问题、对象是什么?选择怎样的调查方式?样本如何选取?调查所得数据如何处理?
(2)制订一个调查方案,展开调查.
(3)将各组的调查方案和调查结果在全班交流,讨论调查的一般步骤和抽样调查中的注意事项,并撰写一份调查报告,给有关厂家提供适当的信息.
4、下列调查中,哪些是全面调查的方式,哪些是用抽样调查方式来收集数据的?
(1)为了了解你所在的班级的每个同学的身高,向全班同学做调查.
(2)为了了解你所在的班级的同学每天的学习时间,选取班级中学号为单号数的所有同学做调查.
(3)为了了解某奶牛场中500头奶牛的产奶量,从中抽取出50头进行分析测量.
5、某校举办球赛,分为若干组,其中第一组有A,B,C,D,E五个队.这五个队要进行单循环赛,即每两个队之间要进行一场比赛,每场比赛采用三局两胜制,即三局中胜两局就获胜.每场比赛胜负双方根据比分会获得相应的积分,积分均为正整数.这五个队完成所有比赛后得到如下的积分表.
第一组 | A | B | C | D | E | 获胜场数 | 总积分 |
A |
| 2:1 | 2:0 | 1:2 | 2:0 | x | 13 |
B | 1:2 |
| m | 0:2 | 1:2 | 0 | y |
C | 0:2 | n |
| 1:2 | 2:1 | 2 | p |
D | 2:1 | 2:0 | 2:1 |
| 1:2 | 3 | 12 |
E | 0:2 | 2:1 | 1:2 | 2:1 |
| 2 | 9 |
根据上表回答下列问题:
(1)第一组一共进行了 场比赛,A队的获胜场数x为 ;
(2)当B队的总积分y=6时,上表中m处应填 ,n处应填 ;
(3)写出C队总积分p的所有可能值为: .
-参考答案-
一、单选题
1、C
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,再逐一分析各选项即可得到答案.
【详解】
解:A、调查中央电视台《开学第一课》的收视率,适合抽查,故本选项不合题意;
B、调查某城市居民6月份人均网上购物的次数,适合抽查,故本选项不合题意;
C、调查即将发射的气象卫星的零部件质量,适合采用全面调查(普查),故本选项符合题意;
D、调查银川市中小学生的视力情况,适合抽查,故本选项不合题意.
故选:C.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
2、D
【解析】
【分析】
根据样本的定义进行判断即可.
【详解】
样本是观测或调查的一部分个体,所以样本是指被抽取的100名学生的体重.
故选:D.
【点睛】
本题考查了样本的定义,掌握样本的定义进行判断是解题的关键.
3、D
【解析】
【分析】
根据总体、个体、样本和样本容量的定义即可判断.
【详解】
这1000多学生的视力的全体是总体,故①正确;
每名学生的视力是个体;故②错误;
200名学生的视力是总体的一个样本,故③错误;
样本容量是200,故④正确.
故选:D.
【点睛】
本题考查抽样调查相关的概念,总体:考察对象的全体;个体:组成总体的每一个考察对象;样本:从总体中抽取的一部分个体;样本容量:样本中个体的数目,掌握总体、个体、样本和样本容量的定义是解决问题的关键.
4、B
【解析】
【分析】
总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考察的对象.从而找出总体、个体.
【详解】
解:①成都市2021年约有13.15万名考生参加中考,为了了解这13.15万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,这种调查采用了抽样调查的方式,故说法正确;
②13.15万名考生的数学成绩是总体,故原说法错误;
③1000名考生的数学成绩是总体的一个样本,故原说法错误;
④每名考生的数学成绩是个体,故说法正确.
所以正确的说法有2个.
故选:B.
【点睛】
本题考查的是确定总体、个体和样本.解此类题需要注意考察对象实际应是表示事物某一特征的数据,而非考查的事物.
5、B
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,但所费人力、物力和时间较少分析解答即可.
【详解】
解:A.某班学生男女比例工作量比较小,适合采用全面调查方式,故本选项不合题意;
B.铅笔使用寿命,调查具有破坏性,适合采用抽样调查,故本选项符合题意;
C.飞机乘客安全检查非常重要,适合采用全面调查方式,故本选项不合题意;
D.载人航天飞船零部件检查非常重要,适合采用全面调查方式,故本选项不合题意.
故选:B.
【点睛】
本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
6、A
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答即可.
【详解】
解:A、了解一批灯泡的使用寿命,采用抽样调查,本选项说法不合适,符合题意;
、了解神舟十二号零部件的质量情况,采用普查,本选项说法合适,不符合题意;
、了解单县中学生睡眠时间,采用抽样调查,本选项说法合适,不符合题意;
、了解中央电视台《开学第一课》的收视率,采用抽样调查,本选项说法合适,不符合题意;
故选:A.
【点睛】
本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
7、B
【解析】
【分析】
分别对照统计表和统计图分析或计算即可判断.
【详解】
解:A、2018年中部地区农村贫困人口为:(万人).故A的说法正确,不符合题意;
B、年,农村贫困人口减少数量为:(万人),
年,农村贫困人口减少数量为:(万人),
年,农村贫困人口减少数量为:(万人),
,故B不正确,符合题意;
C、由统计表可知年,农村贫困人口数量都是东部最少,故C正确,不符合题意;
D、年,东部农村贫困人口减少(万人),
中部农村贫困人口减少(万人),
西部农村贫困人口减少(万人),
,
年,东部农村贫困人口减,(万人),
中部农村贫困人口减少(万人),
西部农村贫困人口减少(万人),
,
D说法正确,不符合题意.
只有符合题意.
故选:B.
【点睛】
本题考查了条形统计图及统计表,明确相关统计基础知识并会根据图表进行分析是解题的关键.
8、A
【解析】
【分析】
根据条形统计图,发现最低分显然在第一次测验中;因为第二次测验的高分人数较多,所以第二次测验较容易.
【详解】
解:根据条形统计图,发现最低分在第一次测验中;因为第二次测验的高分人数较多,所以第二次测验较容易.
故选A.
【点睛】
条形统计图能清楚地表示出每个项目的数据,能够根据条形统计图读懂两者分别表示的意义是关键.
9、B
【解析】
【分析】
根据直方图即可求解.
【详解】
由图可得森林覆盖率低于的区县有新津县、青白江,共2个
故选B.
【点睛】
此题主要考查统计图的判断,解题的关键是根据直方图找到森林覆盖率低于的区县,进而求解.
10、D
【解析】
【分析】
首先要清楚每一种统计图的特点:频数直方图能够显示各组频数分布的情况;条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.
【详解】
解:如果想反映一天的气温变化,选择折线统计图合适,
故选:D.
【点睛】
本题考查统计图的选择,解答此题要熟练掌握统计图的特点,根据实际情况灵活选择.
二、填空题
1、500
【解析】
【分析】
根据样本容量的定义可得答案,样本容量:一个样本包括的个体数量叫做样本容量.
【详解】
解:为了了解某县七年级8800名学生的视力情况,从中抽查了500名学生的视力情况进行统计分析,这个问题中的样本容量是500.
故答案为:500.
【点睛】
此题主要考查了样本容量,关键是注意样本容量只是个数字,没有单位.
2、18
【解析】
【分析】
在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在某个数值附近,可以从比例关系入手,列出方程求解.
【详解】
解:设盒子中大约有白球x个,根据题意得:=0.4,
解得:x=18,
故答案为:18.
【点睛】
本题主要考查了利用频率求频数,本题利用了用大量试验得到的频率稳定在某个数值附近,关键是根据黑球的频率得到相应的等量关系.
3、30%
【解析】
【分析】
在数3141592653中共出现了3个偶数,由频率的计算公式即可求得频率.
【详解】
由题意知,10个数字中出现了3个偶数,则偶数出现的频率为:
故答案为:30%
【点睛】
本题考查了频率的计算,根据频率的计算公式,知道总的次数及事件出现的次数即可求得频率.
4、 50 0.16
【解析】
【分析】
根据总数等于频数除以总数,频率等于频数除以总数求解即可.
【详解】
依题意(人)
故答案为:
【点睛】
本题考查了频率与频数,理解频率,频数,总数之间的关系是解题的关键.频率表示每个对象出现的次数与总次数的比值.
5、0.15
【解析】
【分析】
求出40~50元的人数,再根据频率=频数÷总数进行计算即可.
【详解】
解:“40~50元”的人数为:200−10−30−50−80=30(人),
“40~50元”的频率为:30÷200=0.15,
故答案为:0.15.
【点睛】
本题考查频数分布直方图,掌握频率=频数÷总数是正确解答的关键.
三、解答题
1、 (1)62.5%
(2)A
(3)①②
【解析】
【分析】
(1)根据折线统计图可知起始高度为80cm时,B球的反弹高度,由此可得百分比;
(2)根据折线统计图可知A球每次反弹的高度都比B球高,由此即可得到答案;
(3)①由折线统计图可知4球的反弹高度变化趋势还非常明显,从而可判断A球的反弹高度可能会继续增加;②从折线统计图可知,反弹的高度是不会超过下路的起始高度的.
(1)
解:由折线统计图可知当起始高度为80cm时,B球的反弹高度是50cm,是起始高度的62.5%,
故答案为:62.5%.
(2)
解:比较两个球反弹高度的变化情况可知,A球每次反弹的高度都比B球高,所以A球的弹性大,
故答案为:A.
(3)
解:①根据统计图可知,如果下落的起始高度继续增加,A球的反弹高度可能会继续增加;
②从统计图上看,两个球的反弹高度一直低于起始高度,并且差距越来越大,因此不会超过起始高度.
故答案为:①②.
【点睛】
本题主要考查了折线统计图,能正确准确读懂统计图是解题关键.
2、(1)见解析;(2)72
【解析】
【分析】
(1)根据69.5-79.5这一组的频数为10,频率为0.2,求出总人数,由此进行求解即可;
(2)依据扇形的圆心角度数=360°×占比进行求解即可.
【详解】
解:(1)∵69.5-79.5这一组的频数为10,频率为0.2,
∴总人数=10÷0.2=50人,
∴59.5-69.5这一组的人数=50×0.1=5人,
∴89.5-100.5这一组的频率=6÷50=0.12,
列表如下:
分组 | 49.5-59.5 | 59.5-69.5 | 69.5-79.5 | 79.5-89.5 | 89.5-100.5 | 合计 |
频数 | 3 | 5 | 10 | 26 | 6 | 50 |
频率 | 0.06 | 0.10 | 0.20 | 0.52 | 0.12 | 1.00 |
补全统计图如下:
(2)由题意可得成绩在69.5~79.5范围内的扇形圆心角的度数=360°×0.20=72°,
故答案为:72.
【点睛】
本题主要考查了频率与频数分布表,频数分布直方图,求扇形圆心角度数,解题的关键在于能够熟练掌握相关知识进行求解.
3、(1)见解析;(2)见解析;(3)见解析
【解析】
【分析】
(1)分析题意,根据题目信息,即可回答;
(2)结合(1)中调查的目的、问题和对象,选择合适的调查方式即可制定合理的调查方案;
(3)根据抽样调查的特点,写一份调查报告即可.
【详解】
(1)调查的目的:帮助气球生产厂家确定各种颜色气球的生产比例;
问题:调查周围的人喜欢气球吗?如果喜欢,那么喜欢什么颜色的气球?
对象:接受调查的人可选择抽样调查的调查方式;
样本的选取:可根据自己的想法和具体情况选择合适的样本(此答案不唯一,只要合理即可);调查所得数据的处理:统计调查所得数据,计算出喜欢气球的人数和喜欢各种颜色气球的人数,然后计算比例;
(2)结合(1)中信息即可制定合理的调查方案,如:
问卷调查表:
你喜欢的气球颜色是什么?(在相应颜色下面画“√”) | |||||||
红 | 橙 | 黄 | 绿 | 青 | 蓝 | 紫 | 其他 |
|
|
|
|
|
|
|
|
简要说明:在学校每个班里挑选学号为3的倍数的同学,然后让这些人填写《问卷调查表》,然后统计每种颜色所占比例,形成扇形统计图,即可确定各种颜色气球生产比例;
(3)抽样调查的一般步骤包括:1、搜集统计资料,2、调查方案设计,3、实施调查过程,4、数据处理分析,5、提写调查报告;
抽样调查的注意点:1.随机取样,2.取样具有代表性,3.若样本由具有明显不同特征的部分组成,应按比例从各部分抽样;
根据抽样调查的特点,自己写一份调查报告即可.
【点睛】
本题考查了调查的目的、问题、对象以及普查和抽样调查的概念及应用.在实际问题中体会普查和抽样调查的特点及应用情景.能够运用所学知识分析、解決数学问题和实际问题.
4、(1)全面调查;(2)抽样调查;(3)抽样调查
【解析】
【分析】
根据抽样调查和全面调查的特点即可作出判断.适合全面调查的方式一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.
【详解】
解:(1)为了了解你所在的班级的每个同学的身高,向全班同学做调查.属于全面调查;
(2)为了了解你所在的班级的同学每天的学习时间,选取班级中学号为单号数的所有同学做调查.属于抽样调查;
(3)为了了解某奶牛场中500头奶牛的产奶量,从中抽取出50头进行分析测量.属于抽样调查.
【点睛】
本题考查了抽样调查和全面调查的区别,选择全面调查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.掌握抽样调查和全面调查的区别是解题关键.
5、(1)10,3;(2)2:0;(3)9或10.
【解析】
【分析】
(1)利用公式即可求出比赛场次,根据比赛表格可得出A的获胜的场次即可
(2)由题可知:每场比赛的结果有四种:0:2,1:2,2:1,2:0,根据题意可知每种结果都会得到一个正整数积分,设以上四种得分为a,b,c,d,且a<b<c<d,根据E的总分可得:a+ b+2c=9①,根据D的总得分可得b+2c+d=12②,根据A的总分可得:b+c+2d+=13③,解方程组,讨论整数解可得出a=1,b=2,c=3,d=4;设m对应的积分为x,当y=6时,b+x+a+b=6,即2+x+1+2=6,解方程即可;
(3)根据C队胜2场,分两种情况:当C、B的结果为2:0时,当C、B的结果为2:1时,分别把得分相加即可.
【详解】
解:(1)∵=10(场),
∴第一组一共进行了10场比赛;
∵每场比赛采用三局两胜制,A、B的结果为2:1,A获胜,A、C的结果为2:0,A获胜,A、E的结果为2:0,A获胜,A、D的结果为1:A负,
∴A队共获胜场3常,
∴ x=3,
故答案为:10,3;
(2)由题可知:每场比赛的结果有四种:0:2,1:2,2:1,2:0,
根据题意可知每种结果都会得到一个正整数积分,设以上四种得分为a,b,c,d,且a<b<c<d,
根据E的总分可得:a+ b+2c=9①,
根据D的总得分可得b+2c+d=12②,
根据A的总分可得:b+c+2d+=13③,
③-②得d-c=1,
∴d=c+1代入②得b+3c=11,
∴c=,
∴b=2,c=3,
∴d=c+1=4,
∴a=9-2-6=1,
∴a=1,b=2,c=3,d=4,
设m对应的积分为x,
当y=6时,b+x+a+b=6,即2+x+1+2=6,
∴x=1,
∴m处应填0:2;
∴B:C=0:2,
∴C:B=2:0,
∴n处应填2:0;
(3)∵C队胜2场,
∴分两种情况:当C、B的结果为2:0时,
p=a+d+c+b=1+4+3+2=10;
当C、B的结果为2:1时,
p=a+2c+b=1+3×2+2=9;
∴C队总积分p的所有可能值为9或10.
故答案为:9或10.
【点睛】
本题考查比赛应用题,表格信息的收集与处理,四元方程组的解法,列代数式求值,分类讨论思想应用,认真阅读题目,读懂题意,是解题关键.
初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试课后复习题: 这是一份初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试课后复习题,共21页。试卷主要包含了下列调查中适合普查的是,下列调查中,最适合采用全面调查,新型冠状病毒肺炎等内容,欢迎下载使用。
初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试同步达标检测题: 这是一份初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试同步达标检测题,共23页。试卷主要包含了下列问题中,适合抽样调查的是,下列做法正确的是,下列调查中,最适合抽样调查的是等内容,欢迎下载使用。
初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试同步达标检测题: 这是一份初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试同步达标检测题,共20页。试卷主要包含了下列适合于抽样调查的是,新型冠状病毒肺炎等内容,欢迎下载使用。