初中数学第十八章 数据的收集与整理综合与测试当堂达标检测题
展开八年级数学下册第十八章数据的收集与整理专题测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、为了调查某校七年级学生的身高情况,在七年级的600名学生中随机抽取了50名学生,下列说法正确的是( )
A.此次调查的总体是600名学生 B.此次调查属于全面调查
C.此次调查的个体是被抽取的学生 D.样本容量是50
2、护士为了描述某病人某一天的体温变化情况,以下最合适的统计图是( )
A.扇形统计图 B.条形统计图 C.折线统计图 D.直方图
3、在实数,,,,中,无理数出现的频率是( )
A. B. C. D.
4、如图是某超市2017~2021年的销售额及其增长率的统计图,下面说法中正确的是( )
A.这5年中,销售额先增后减再增
B.这5年中,增长率先变大后变小
C.这5年中,销售额一直增加
D.这5年中,2021年的增长率最大
5、小明抛一枚硬币100次,其中有60次正面朝上,则反面朝上的频率是( )
A.0.6 B.6 C.0.4 D.4
6、下列调查中最适合采用全面调查的是( )
A.调查甘肃人民春节期间的出行方式 B.调查市场上纯净水的质量
C.调查我市中小学生垃圾分类的意识 D.调查某航班上的乘客是否都持有“绿色健康码”
7、小明同学统计了某学校八年级部分同学每天阅读图书的时间,并绘制了统计图,如图所示.下面有四个推断:
①小明此次一共调查了100位同学;
②每天阅读图书时间不足15分钟的同学人数多于45﹣60分钟的人数;
③每天阅读图书时间在15﹣30分钟的人数最多;
④每天阅读图书时间超过30分钟的同学人数是调查总人数的20%.
根据图中信息,上述说法中正确的是( )
A.①③ B.①④ C.②③ D.②④
8、在一次班级体测调查中,收集到40名同学的跳高数据,数据分别落在5个组内,且落入第一、二、三、五组的数据个数分别为2、7、11、12,则第四组频数为( ).
A.9 B.8 C.7 D.6
9、某校为了解全校1000名学生的视力情况,抽查了200名学生的视力进行统计分析.在这个问题中,下列说法:①这1000多学生的视力的全体是总体;②每名学生是个体;③200名学生是总体的一个样本;④样本容量是200.其中说法正确的有( )
A.①②③④ B.①②④ C.①③④ D.①④
10、已知数据,﹣7,2.5,π, ,其中分数出现的频率是( )
A.20% B.40% C.60% D.80%
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知某组数据的频数为63,样本容量为90,则频率为____.
2、目前我国中年人群中“三高”(高血压、高血脂、高血糖)现象严重,这个结论是通过______得到的(填“全面调查”或“抽样调查”).
3、一个扇形统计图中,某部分占总体的百分比为13%,则该部分所对扇形圆心角为______.
4、如图是某同学6次数学测验成绩的折线统计图,则该同学这6次成绩最高分与最低分的差是_________分.
5、如图是七年级班参加课外兴趣小组人数的扇形统计图,则表示参加绘画兴趣小组人数的扇形的圆心角度数是_______________________.
三、解答题(5小题,每小题10分,共计50分)
1、银行在某储蓄所抽样调查了50名顾客,他们的等待时间(进入银行到接受受理的时间间隔,单位:min)如下:
15 | 20 | 18 | 3 | 25 | 34 | 6 | 0 | 17 | 24 |
23 | 30 | 35 | 42 | 37 | 24 | 21 | 1 | 14 | 12 |
34 | 22 | 13 | 34 | 8 | 22 | 31 | 24 | 17 | 33 |
4 | 14 | 23 | 32 | 33 | 28 | 42 | 25 | 14 | 22 |
31 | 42 | 34 | 26 | 14 | 25 | 40 | 14 | 24 | 11 |
将数据适当分组,并绘制相应的频数直方图.
2、小颖随机调查了若干市民租用公共自行车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图,请根据图中信息,解答下列问题:
(1)这次被调查的总人数是多少?
(2)试求表示A组的扇形圆心角的度数,并补全条形统计图;
(3)试求在租用公共自行车的市民中,骑车时间在30分钟及以下的人数所占的百分比
3、4月23日是“世界读书日”,我校校团委发起了“让阅读成为习惯”的读书活动,鼓励学生利用周末积极阅读课外书籍.为了解学生周末两天的读书时间,校团委随机调查了部分学生的读书时间x(单位:分钟),把读书时间分为四组:A(30≤x<60),B.(60≤x<90),C.(90≤x<120),D(120≤x<150).部分数据信息如下:
a.B组和C组的所有数据:85 90 60 70 110 75 65 78 100 90 80 95 90
b.根据调查结果绘制了如下尚不完整的统计图:
请根据以上信息,回答下列问题:
(1)被调查的学生共有多少人,并补全频数分布直方图;
(2)在扇形统计图中,C组所对应的扇形圆心角是_____;
(3)请结合统计图给全校学生发出一条合理化的倡议.
4、某校开设了丰富多彩的实践类拓展课程,分别设置了体育类、艺术类、文学类及其它类课程(要求人人参与,每人只能选择一门课程).为了解学生喜爱的拓展类别,学校做了一次抽样调查.根据收集到的数据绘制成以下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:
(1)直接在图①中补全条形统计图;
(2)图②中其它类课程所对应扇形的圆心角是 度(直接填空);
(3)若该校有1500名学生,请估计喜欢文学类课程的学生有多少人?
5、为了了解你们学校的学生是否吃早饭,下列这些抽取样本的方式是否合适?
(1)早上7:00至7:30在校门口随机选择50名同学进行调查;
(2)选择全校每个班级中学号是5和15的同学进行调查;
(3)选择七(1)班全体学生进行调查.
-参考答案-
一、单选题
1、D
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目,我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
解:A、此次调查的总体是某校七年级学生的身高情况,故本选项不合题意;
B、此次调查属于抽样调查,故本选项不合题意;
C、此次调查的个体是每一名七年级学生的身高情况,故本选项不合题意;
D、样本容量是50.故本选项符合题意.
故选:D.
【点睛】
本题考查了数据的收集,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小,样本容量是样本中包含的个体的数目,不能带单位.
2、C
【解析】
【分析】
根据题意,描述某病人某一天的体温变化情况最合适的应该反映变化趋势,则选取折线统计图,据此求解即可.
【详解】
解:∵护士为了描述某病人某一天的体温变化情况,
∴最合适的统计图是折线统计图
故选C
【点睛】
本题考查了根据实际选取合适的统计图,理解题意是解题的关键.条形统计图的特点:能清楚的表示出数量的多少;折线统计图的特点:不但可以表示出数量的多少,而且能看出各种数量的增减变化情况;扇形统计图比较清楚地反映出部分与部分、部分与整体之间的数量关系.
3、C
【解析】
【分析】
根据题意找出无理数的个数,用无理数的个数除以总数即可求得无理数出现的频率
【详解】
解:∵实数,,,,中,无理数有,,共3个,
∴无理数出现的频率是
故选C
【点睛】
本题考查了无理数,根据描述求频率,解答本题的关键掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有的数.
4、C
【解析】
【分析】
根据统计图中增长率及销售额的变化逐一判断即可得答案.
【详解】
A.这5年中,销售额连续增长,故该选项错误,
B.这5年中,增长率先变大后变小再变大,故该选项错误,
C.这5年中,销售额一直增加,故该选项正确,
D.这5年中,2018年的增长率最大,故该选项错误,
故选:C.
【点睛】
本题考查折线统计图与条形统计图,从统计图中,正确得出需要信息是解题关键.
5、C
【解析】
【分析】
先求出反面朝上的频数,然后根据频率=频数÷总数求解即可
【详解】
解:∵小明抛一枚硬币100次,其中有60次正面朝上,
∴小明抛一枚硬币100次,其中有40次反面朝上,
∴反面朝上的频率=40÷100=0.4,
故选C.
【点睛】
本题主要考查了根据频数求频率,解题的关键在于能够熟练掌握频率=频数÷总数.
6、D
【解析】
【分析】
根据抽样调查和全面调查的定义逐一判断即可.
【详解】
解|:A、调查甘肃人民春节期间的出行方式,应采用抽样调查,故不符合题意;
B、调查市场上纯净水的质量,应采用抽样调查,故不符合题意;
C、调查我市中小学生垃圾分类的意识,应采用抽样调查,故不符合题意;
D、调查某航班上的乘客是否都持有“绿色健康码”,应采用全面调查,故符合题意;
故选D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
7、A
【解析】
【分析】
根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.
【详解】
解:①小明此次一共调查了10+60+20+10=100(人),此结论正确;
②由频数分布直方图知,每天阅读图书时间不足15分钟的人数与45-60分钟的人数相同,均为10人,此结论错误;
③每天阅读图书时间在15-30分钟的人数最多,有60人,此结论正确;
④每天阅读图书时间超过30分钟的人数占调查总人数的比例为=30%,此结论错误;
故选:A.
【点睛】
本题考查了读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
8、B
【解析】
【分析】
根据题意可得:共40个数据,知道一、二、三、五组的数据个数,用总数减去这几组频数,即可得到答案.
【详解】
解:由题意得:第四组的频数=40-(2+7+11+12)=8;
故选B.
【点睛】
本题是对频数的考查,掌握各小组频数之和等于数据总和是解题的关键.
9、D
【解析】
【分析】
根据总体、个体、样本和样本容量的定义即可判断.
【详解】
这1000多学生的视力的全体是总体,故①正确;
每名学生的视力是个体;故②错误;
200名学生的视力是总体的一个样本,故③错误;
样本容量是200,故④正确.
故选:D.
【点睛】
本题考查抽样调查相关的概念,总体:考察对象的全体;个体:组成总体的每一个考察对象;样本:从总体中抽取的一部分个体;样本容量:样本中个体的数目,掌握总体、个体、样本和样本容量的定义是解决问题的关键.
10、B
【解析】
【分析】
在这5个数中,其中分数有,2.5两个,即可得.
【详解】
解:在这5个数中,其中分数有,2.5两个,
所以其中分数出现的频率是,
故选B.
【点睛】
本题考查了频率,解题的关键是掌握频率公式“频率=频数÷总数”.
二、填空题
1、0.7
【解析】
【分析】
根据频率=频数÷总数,求解即可.
【详解】
这组数据的频率63÷90=0.7,
故答案为:0.7.
【点睛】
本题考查了频率的计算公式,解答本题的关键是掌握公式:频率=频数÷总数.
2、抽样调查
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
【详解】
解:目前我国中年人群中“三高”(高血压、高血脂、高血糖)现象严重,这个结论是通过抽样调查得到的,
故答案为:抽样调查.
【点睛】
本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,解题的关键是知道一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
3、46.8°
【解析】
【分析】
利用占总体的百分比是,则这部分的圆心角是360度的,即可求出结果.
【详解】
解:该部分所对扇形圆心角为:.
故答案为:.
【点睛】
本题考查扇形统计图中扇形所对圆心角的度数与百分比的关系,熟练掌握扇形所对圆心角的计算方法是解题关键.
4、25
【解析】
【分析】
先从统计图中读出这6次成绩的最高分与最低分,然后相减即可.
【详解】
解:根据折线统计图可知,这6次成绩分别是(单位:分):
65,75,60,80,70,85
其中,最高分是85分,最低分是60分,
所以,最高分与最低分的差是85-60=25(分).
故答案为:25.
【点睛】
本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.
5、
【解析】
【分析】
先求出绘画占的百分比,乘以360°即可得到结果.
【详解】
解:参加绘画兴趣小组人数的扇形的圆心角度数是=360°×(1-50%-35%)=360°×15%=54°,
故答案为:
【点睛】
此题考查了扇形统计图,弄清扇形统计图中的数据特征是解本题的关键.
三、解答题
1、见解析
【解析】
【分析】
根据数据,确定组距,进而确定组数,确定每个组,然后作出频数分布表,进而作出频数直方图.
【详解】
分组方法不唯一,可按如下方法分成5组:
分组 | 0~10 | 11~20 | 21~30 | 31~40 | 41~50 |
频数 | 6 | 13 | 16 | 12 | 3 |
频数直方图如下:
【点睛】
本题考查频数分布表,频数直方图的作法,掌握作图步骤是解答本题的关键.
2、(1)50;(2)108°,图见解析;(3)92%
【解析】
【分析】
(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数;
(2)用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数,从而补全统计图;
(3)用A、B、D组的人数除以总人数,即可得出骑车时间不超过30分钟的人数所占的百分比.
【详解】
解:(1)调查的总人数是:19÷38%=50(人);
(2)A组所占圆心角的度数是:360×=108°;
C组的人数有:50-15-19-4=12(人)
补图如下:
(3)因为30分钟及以下的应该是A+B+C区域,所以骑车时间是30分钟及以下的人数所占的百分比:×100%=92%
【点睛】
本题考查的是条形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.
3、 (1)20,作图见解析
(2)108°
(3)书是人类进步的阶梯,同学们周末两天只有少部分人读书时间在两小时以上,需增加读书的时间.(答案不唯一)
【解析】
【分析】
(1)由扇形统计图中A所占扇形比例为20%和频数分布直方图中A组频数为4,即可得总人数为4÷20%=20人,再由题干可求得B组人数为7人,D组人数为3人,补全频数分布直方图即可.
(2)由(1)知频数分布直方图中C组频数为6,故C组所对应扇形圆心角为
(3)与统计图的数据相关即可,答案不唯一
(1)
总人数为4÷20%=20人
B组人数为13-6=7人
D组人数为20-4-6-7=3人
补全频数分布直方图如图所示
(2)
故C组所对应的扇形圆心角是108°.
(3)
书是人类进步的阶梯、同学们周末两天只有少部分人读书时间在两小时以上,需增加读书的时间.(答案不唯一)
【点睛】
本题考查了数据的调查及整理.频数分布直方图是用小长方形的面积来反映数据落在各个小组内的频数的大小的统计图.扇形统计图,特点:扇形统计图能清楚地表示出各部分在总体中所占的百分比,缺点:在两个扇形统计图中,若一个统计图中的某一个量所占的百分比比另一个统计图中的某一个量所占的百分比多,容易造成第一个统计量大于第二个统计量的错觉.注意:扇形统计图中,用圆代表总体,扇形的大小代表各部分数量占总体数量的百分数,但是没有给出具体数值,因此不能通过两个扇形统计图来比较两个统计量的多少.
4、(1)见解析;(2)36;(3)450
【解析】
【分析】
(1)结合两个统计图,根据体育类80人所占的百分比是40%,计算出总人数,利用总人数乘以20%求得参加艺术社团的人数,再求得参加其它社团的人数,补全条形统计图;
(2)利用360°乘以参加其它类课程的所占的比例求得圆心角的度数;
(3)求出文学类所占的百分比,再用1500乘以百分比估计即可.
【详解】
(1)调查的总人数是80÷40%=200(人),
参加艺术社团的人数是200×20%=40(人),
参加其它社团的人数200−80−40−60=20(人),
∴补全条形统计图如下:
(2)它类课程在扇形统计图中所占圆心角的度数是,
故答案为:36;
(3)(人),
∴估计该校喜欢文学类课程的学生450人.
【点睛】
此题考查扇形统计图,条形统计图,解题关键在于看懂图中数据.
5、(1)(2)可以,(3)不合适.
【解析】
【分析】
(1)符合样本抽取的代表性,广泛性,全面性的特点;
(2)符合样本抽取的代表性,广泛性,全面性的特点;
(3)不符合样本抽取的代表性,广泛性,全面性的特点.
【详解】
(1)符合样本抽取的代表性,广泛性,全面性的特点,
故可以;
(2)符合样本抽取的代表性,广泛性,全面性的特点,
故可以;
(3)不符合样本抽取的代表性,广泛性,全面性的特点,
故不可以.
【点睛】
本题考查了样本抽取,熟练掌握抽取样本的基本条件和基本特点是解题的关键.
初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试习题: 这是一份初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试习题,共20页。
2020-2021学年第十八章 数据的收集与整理综合与测试课堂检测: 这是一份2020-2021学年第十八章 数据的收集与整理综合与测试课堂检测,共20页。试卷主要包含了下列说法中,下列调查中,最适合抽样调查的是等内容,欢迎下载使用。
初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试课后作业题: 这是一份初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试课后作业题,共20页。试卷主要包含了新型冠状病毒肺炎,下列说法中,下列调查中,适合采用全面调查等内容,欢迎下载使用。