![2022年强化训练冀教版八年级数学下册第十八章数据的收集与整理难点解析试题(含答案及详细解析)01](http://img-preview.51jiaoxi.com/2/3/12720079/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版八年级数学下册第十八章数据的收集与整理难点解析试题(含答案及详细解析)02](http://img-preview.51jiaoxi.com/2/3/12720079/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版八年级数学下册第十八章数据的收集与整理难点解析试题(含答案及详细解析)03](http://img-preview.51jiaoxi.com/2/3/12720079/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试习题
展开八年级数学下册第十八章数据的收集与整理难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法中:①除以一个数等于乘以这个数的倒数;②用四个圆心角都是的扇形,一定可以拼成一个圆;③把5克盐放入100克水中,盐水的含盐率是5%;④如果小明的体重比小方体重少,那么小方体重比小明体重多25%;⑤扇形统计图可以直观地表示各部分数量与总数之间的关系.其中正确说法的个数是( )
A.1个 B.2个 C.3个 D.4个
2、党的十八大以来,全国各地认真贯彻精准扶贫方略,扶贫工作力度、深度和精准度都达到了新的水平,为2020年全面建成小康社会的战略目标打下了坚实基础.如图是根据近几年中国农村贫困人口数量(单位:万人)及分布情况绘制的统计图表的一部分.
年份 人数 地区 | 2017 | 2018 | 2019 |
东部 | 300 | 147 | 47 |
中部 | 1112 |
| 181 |
西部 | 1634 | 916 | 323 |
(以上数据来源于国家统计局)
根据统计图表提供的信息,下面推断不正确的是( )
A.2018年中部地区农村贫困人口为597万人
B.年,农村贫困人口减少数量逐年增多
C.年,农村贫困人口数量都是东部最少
D.年,每年西部农村贫困人口减少数量都最多
3、下列调查方式中,适合用普查方式的是( )
A.对某市学生课外作业时间的调查 B.对神州十三号载人航天飞船的零部件进行调查
C.对某工厂生产的灯泡寿命的调查 D.对某市空气质量的调查
4、下列调查方式,你认为最合适的是( )
A.对端午节期间市场上粽子质量情况,采用全面调查方式
B.旅客上飞机前的安检,采用抽样调查方式
C.调查本市居民对“垃圾分类”有关内容的了解程度,采用全面调查方式
D.调查“神舟十一号”飞船重要零部件的产品质量,采用全面调查方式
5、一组数据的最大值为105,最小值为23,若确定组距为9,则分成的组数为( )
A.11 B.10 C.9 D.8
6、在一次班级体测调查中,收集到40名同学的跳高数据,数据分别落在5个组内,且落入第一、二、三、五组的数据个数分别为2、7、11、12,则第四组频数为( ).
A.9 B.8 C.7 D.6
7、如图是某超市2017~2021年的销售额及其增长率的统计图,下面说法中正确的是( )
A.这5年中,销售额先增后减再增
B.这5年中,增长率先变大后变小
C.这5年中,销售额一直增加
D.这5年中,2021年的增长率最大
8、体育老师让小明5分钟内共投篮50次,一共投进30个球,请问投进球的频率是( )
A.频率是0.5 B.频率是0.6 C.频率是0.3 D.频率是0.4
9、下列调查中,适合进行全面调查的是( )
A.《新闻联播》电视栏目的收视率
B.全国中小学生喜欢上数学课的人数
C.某班学生的身高情况
D.市场上某种食品的色素含量是否符合国家标准
10、下列问题中,适合抽样调查的是( )
A.市场上某种食品含糖量是否符合国家标准
B.审核书稿中的错别字
C.旅客上飞机前的安检
D.了解我校初二某班男生身高状况
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在“献爱心”活动中,某班全体同学都向灾区孩子捐了图书,捐书情况如下表:
每人捐书的册数(册) | 5 | 10 | 15 | 20 |
相应的捐书人数 | 17 | 22 | 4 | 2 |
则该班学生共有________名,全班共捐书________册,平均每人捐书________册.
2、某校学生自主建立了一个学习用品义卖社团,已知八年级200名学生义卖所得金额的频数分布直方图如图所示,那么40~50元这个小组的组频率是__________.
3、如图,是小垣同学某两天进行四个体育项目(ABCD)锻炼的时间统计图,第一天锻炼了1小时,第二天锻炼了40分钟,根据统计图,小垣这两天体育锻炼时间最长的项目是__.
4、为了解中学生获取资讯的主要渠道,设置“A.报纸,B.电视,C.网络,D.身边的人,E.其他”五个选项(必选且只能选一项),随机抽取50名中学生进行问卷调查,根据调查结果绘制条形图如图该调查的方式是________,图中的值是________.
5、圆周率π≈3.141592653589793,数字5出现的频数是____.
三、解答题(5小题,每小题10分,共计50分)
1、智能手机等高科技产品正越来越严重地伤害青少年的眼睛,保护视力,刻不容缓.某中学为了解学生的视力状况,培养学生保护视力的意识,对八年级部分学生做了一次主题为“保护视力永康降度”的调查活动,根据近视程度的不同将学生分为A、B、C、D、E五类,其中A表示视力良好、B表示轻度近视(300度以下)、C表示中度近视(300度~600度)、D表示高度近视(600度~900度)、E表示超高度近视(900度以上).学校根据调查情况进行了统计,并绘制了如下两幅不完整的统计图:
请你结合图中信息,解答下列问题:
(1)参与本次调查活动的学生有 人,
(2)求出C与E的人数,并补全条形统计图;
(3)求出超高度近视在扇形图中所对应的圆心角的度数.
2、为了解地铁开通对节约“出行时间”影响情况,对地铁1号线上某趟列车上的部分乘客进行随机抽样调查.将调查结果分为、、、四类,其中表示“出行节约0﹣10分钟”,表示“出行节约10﹣30分钟”,表示“出行节约30分钟以上”,表示“其他情况”,并根据调查结果绘制了图①、图②这两个不完整的统计图表.
(1)求这次调查的总人数.
(2)补全条形统计图.
(3)在图②的扇形统计图中,求类所对应的扇形圆心角的度数.
3、某班男女生人数比例如图(1)所示,如果用图(2)的正方形表示该班全体人数,你能在图(2)中直观地表示该班男女生人数的比例关系吗?
4、某学校计划在八年级开设“折扇”“刺绣”“剪纸”“陶艺”四门校本课程,要求每人必须参加,并且只能选择其中一门课程,为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图.(部分信息未给出)
请你根据以上信息解决下列问题:
(1)参加问卷调查的学生人数为 名,补全条形统计图(画图并标注相应数据);
(2)“陶艺”课程所对应的扇形圆心角的度数是多少?
(3)若该校八年级一共有1000名学生,试估计选择“刺绣”课程的学生有多少名?
5、小明想了解本校九年级学生对“书画、器乐、艺术、棋类”四项“校本课程”的喜欢情况,随机抽取了部分学生进行问卷调查(每名学生只选择一项),将调查结果整理并绘制成如图所示不完整的统计图.请结合统计图解答下列问题:
(1)求本次抽取的学生的人数.
(2)请根据以上信息直接在答题卡中补全条形统计图.
(3)求扇形统计图中的值.
(4)求扇形统计图中喜欢器乐的学生人数所对应的圆心角的度数.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据除法法则、圆与扇形的关系,单位“1”的含义,百分数的意义,以及扇形统计图的特点分析即可.
【详解】
解:①除以一个不等于零的数等于乘以这个数的倒数,故不正确;
②用四个圆心角都是且半径相等的扇形,一定可以拼成一个圆,故不正确;
③把5克盐放入100克水中,盐水的含盐率是5÷(5+100)≈4.8%,故不正确;
④设小方体重为a,则小明的体重为a.小方的体重比小明的体重多(a-a)÷a=25%,正确;
⑤扇形统计图可以直观地表示各部分数量与总数之间的关系,正确.
故选B.
【点睛】
本题考查了除法法则,圆与扇形的关系,单位“1”的含义,百分数的意义,以及扇形统计图的特点,掌握单位“1”的含义,百分数的意义是关键.
2、B
【解析】
【分析】
分别对照统计表和统计图分析或计算即可判断.
【详解】
解:A、2018年中部地区农村贫困人口为:(万人).故A的说法正确,不符合题意;
B、年,农村贫困人口减少数量为:(万人),
年,农村贫困人口减少数量为:(万人),
年,农村贫困人口减少数量为:(万人),
,故B不正确,符合题意;
C、由统计表可知年,农村贫困人口数量都是东部最少,故C正确,不符合题意;
D、年,东部农村贫困人口减少(万人),
中部农村贫困人口减少(万人),
西部农村贫困人口减少(万人),
,
年,东部农村贫困人口减,(万人),
中部农村贫困人口减少(万人),
西部农村贫困人口减少(万人),
,
D说法正确,不符合题意.
只有符合题意.
故选:B.
【点睛】
本题考查了条形统计图及统计表,明确相关统计基础知识并会根据图表进行分析是解题的关键.
3、B
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【详解】
解:A.对某市学生课外作业时间的调查工作量比较大,宜采用抽样调查;
B.对神州十三号载人航天飞船的零部件进行调查非常重要,宜采用普查;
C.对某工厂生产的灯泡寿命的调查具有破坏性,宜采用抽样调查;
D.对某市空气质量的调查工作量非常大,宜采用抽样调查;
故选B.
【点睛】
本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
4、D
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
【详解】
解:A.对端午节期间市场上粽子质量情况具有破坏性,适合抽样调查,故选项A不符合题意;
B.旅客上飞机前的安检,意义重大,适合全面调查,故选项B不符合题意;
C.调查本市居民对“垃圾分类”有关内容的了解程度工作量大,适合抽样调查,故选项C不符合题意;
D.调查“神舟十一号”飞船重要零部件的产品质量,宜采用全面调查方式,故选项D符合题意;
故选:D.
【点睛】
本题考查了抽样调查和全面调查的选择,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
5、B
【解析】
【分析】
极差除以组距,大于或等于该值的最小整数即为组数.
【详解】
解:,
分10组.
故选:B.
【点睛】
本题考查了组距的划分,一般分为组最科学.
6、B
【解析】
【分析】
根据题意可得:共40个数据,知道一、二、三、五组的数据个数,用总数减去这几组频数,即可得到答案.
【详解】
解:由题意得:第四组的频数=40-(2+7+11+12)=8;
故选B.
【点睛】
本题是对频数的考查,掌握各小组频数之和等于数据总和是解题的关键.
7、C
【解析】
【分析】
根据统计图中增长率及销售额的变化逐一判断即可得答案.
【详解】
A.这5年中,销售额连续增长,故该选项错误,
B.这5年中,增长率先变大后变小再变大,故该选项错误,
C.这5年中,销售额一直增加,故该选项正确,
D.这5年中,2018年的增长率最大,故该选项错误,
故选:C.
【点睛】
本题考查折线统计图与条形统计图,从统计图中,正确得出需要信息是解题关键.
8、B
【解析】
【分析】
根据频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数÷总数可得答案.
【详解】
解:小明进球的频率是30÷50=0.6,
故选:B.
【点睛】
此题主要考查了频率,关键是掌握计算方法.
9、C
【解析】
【详解】
解:A、“《新闻联播》电视栏目的收视率”适合进行抽样调查,则此项不符题意;
B、“全国中小学生喜欢上数学课的人数” 适合进行抽样调查,则此项不符题意;
C、“某班学生的身高情况”适合进行全面调查,则此项符合题意;
D、“市场上某种食品的色素含量是否符合国家标准” 适合进行抽样调查,则此项不符题意;
故选:C.
【点睛】
本题考查了全面调查与抽样调查,熟练掌握全面调查的定义(为了一定目的而对考察对象进行的全面调查,称为全面调查)和抽样调查的定义(抽样调查是指从总体中抽取样本进行调查,根据样本来估计总体的一种调查)是解题关键.
10、A
【解析】
【分析】
根据抽样调查的定义依次分析判断即可得到答案.
【详解】
解:市场上某种食品含糖量是否符合国家标准适合抽样调查,故选项A符合题意;
审核书稿中的错别字适合全面调查,故选项B不符合题意;
旅客上飞机前的安检适合全面调查,故选项C不符合题意;
了解我校初二某班男生身高状况适合全面调查,故选项D不符合题意;
故选:A.
【点睛】
此题考查了抽样调查的定义,能理解定义并正确区分抽样调查与全面调查是解题的关键.
二、填空题
1、 45 405 9
【解析】
【分析】
根据表格中的数据,分别求出总人数以及捐书的总册数,再求平均数,即可.
【详解】
解:17+22+4=2=45(人),
5×17+10×22+15×4+20×2=405(册),
405÷45=9(册),
故答案是:45,405,9.
【点睛】
本题主要考查有理数的运算的实际应用,根据题意列出算式,是解题的关键.
2、0.15
【解析】
【分析】
求出40~50元的人数,再根据频率=频数÷总数进行计算即可.
【详解】
解:“40~50元”的人数为:200−10−30−50−80=30(人),
“40~50元”的频率为:30÷200=0.15,
故答案为:0.15.
【点睛】
本题考查频数分布直方图,掌握频率=频数÷总数是正确解答的关键.
3、C
【解析】
【分析】
根据统计图上的百分比求出两天的各项运动时间即可.
【详解】
解:由统计图可知,
这两天锻炼时间,A有60×20%+40×20%=20(分钟),
B有60×30%+40×20%=26(分钟),
C有60×50%=30(分钟),
D有40×60%=24(分钟),
∵20<24<26<30,
∴小垣这两天体育锻炼时间最长的项目是C,
故答案为:C.
【点睛】
本题主要考查了扇形统计图的应用,熟记概念是解题的关键,注意第一天和第二天锻炼时间是不相同的.
4、 抽样调查 24
【解析】
【分析】
根据 “随机抽取50名中学生进行该问卷调查”可得该调查方式是抽样调查,根据调查的样本容量为50列出方程6+10+8+a+12=50,解方程即可.
【详解】
解:由题意知,该调查方式是抽样调查,
由样本容量为50可知:6+10+6+a+4=50,
解得a=24,
故答案为:抽样调查;24.
【点睛】
此题主要考查了条形统计图,以及抽样调查,关键是读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
5、3
【解析】
【分析】
从数5出现的次数即可得出答案.
【详解】
在中,5出现了3次,
∴数字5出现的频数是3.
故答案为:3.
【点睛】
本题考查频数的定义:一组数据中,某数据出现的次数,掌握频数的定义是解题的关键.
三、解答题
1、(1)600;(2)150,12,补全条形统计图见解析;(3)
【解析】
【分析】
(1)根据条形统计图和扇形统计图由B类别的人数和所占比即可求出总人数;
(2)用总人数乘以C类别的所占比即可得出C类别的人数,用总人数减去A、B、C、D的人数即可得出E类别人数,补全条形统计图即可;
(3)求出E类别的所占比,再乘以即可得出答案.
【详解】
(1)由题可知:参与本次调查活动的学生有(人),
故答案为:600;
(2)C类别的人数为(人),
E类别的人数为(人),
补全条形统计图如下:
(3)超高度近视在扇形图中所对应的圆心角的度数为.
【点睛】
本题考查统计知识,根据条形统计图与扇形统计图所给出的条件求解是解题的关键.
2、(1)50人;(2)见解析;(3)108°
【解析】
【分析】
(1)利用类的人数除以类所占百分比,即可求解;
(2)求出“出行节约30分钟以上”的人数,即可求解;
(3)用360°乘以类所占的百分比,即可求解.
【详解】
解:(1)调查的总人数是:(人).
(2)“出行节约30分钟以上”的人数有 (人),
补全图形,如图所示:
(3)A类所对应的扇形圆心角的度数是.
【点睛】
本题主要考查了条形统计图和扇形统计图,明确题意,准确获取信息是解题的关键.
3、见解析
【解析】
【分析】
根据扇形统计图的比例关系,在正方形中按比例画出男女生的比例即可.注意:一般情况下用圆和扇形代表总体和部分要比其他形式更加直观方便.
【详解】
如图所示
在扇形统计图中,是从圆的圆心出发,用乘该部分所占比例,得到角度后画扇形的;但在正方形的图中,若从正方形的中心出发,则不能用乘该部分所占比例,得到角度再分割正方形.
【点睛】
本题考查了扇形统计图,理解扇形统计图是解题的关键.
4、(1)50;见解析;(2)36°;(3)200名
【解析】
【分析】
(1)根据折扇的人数和所占的百分比,求出调查的学生总人数,再用总人数减去其它课程的人数,求出剪纸的人数,从而补全统计图;
(2)用选择“陶艺”课程的学生数除以总人数,再乘以360°即可得出答案;
(3)用八年级的总人数乘以选择“刺绣”课程的学生所占的百分比即可.
【详解】
解:(1)参加问卷调查的学生人数为:(名,
剪纸的人数有:(名,
补全统计图如下:
故答案为:50;
(2)“陶艺”课程所对应的扇形圆心角的度数是.
(3)根据题意得:
(名,
答:估计选择“刺绣”课程的学生有200名.
【点睛】
本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
5、(1)200人;(2)图见解析;(3)20;(4).
【解析】
【分析】
(1)根据喜欢棋类的学生的条形统计图和扇形统计图信息即可得;
(2)先根据(1)的结果求出喜欢书画的学生人数,再补全条形统计图即可得;
(3)利用喜欢艺术学生的人数除以调查的总人数即可得;
(4)利用喜欢器乐的学生人数所占百分比乘以即可得.
【详解】
解:(1)(人),
答:本次抽取的学生有200人;
(2)喜欢书画的学生人数为(人),
由此补全条形统计图如下:
(3),
则;
(4),
答:喜欢器乐的学生人数所对应圆心角的度数为.
【点睛】
本题考查了条形统计图和扇形统计图的信息关联、画条形统计图等知识点,熟练掌握统计调查的相关知识是解题关键.
2020-2021学年第十八章 数据的收集与整理综合与测试同步训练题: 这是一份2020-2021学年第十八章 数据的收集与整理综合与测试同步训练题,共21页。试卷主要包含了下列调查中,最适合采用全面调查,下列问题不适合用全面调查的是,下列调查方式,你认为最合适的是等内容,欢迎下载使用。
冀教版八年级下册第十八章 数据的收集与整理综合与测试当堂达标检测题: 这是一份冀教版八年级下册第十八章 数据的收集与整理综合与测试当堂达标检测题,共19页。
冀教版八年级下册第十八章 数据的收集与整理综合与测试课后作业题: 这是一份冀教版八年级下册第十八章 数据的收集与整理综合与测试课后作业题,共22页。试卷主要包含了下列调查中,适合采用全面调查,下列说法中正确的是等内容,欢迎下载使用。