![2021-2022学年基础强化冀教版八年级数学下册第十八章数据的收集与整理专项练习试题第1页](http://img-preview.51jiaoxi.com/2/3/12719958/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化冀教版八年级数学下册第十八章数据的收集与整理专项练习试题第2页](http://img-preview.51jiaoxi.com/2/3/12719958/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化冀教版八年级数学下册第十八章数据的收集与整理专项练习试题第3页](http://img-preview.51jiaoxi.com/2/3/12719958/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试同步测试题
展开
这是一份初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试同步测试题,共23页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、为了解某市七年级学生的一分钟跳绳成绩,从该市七年级学生中随机抽取100名学生进行调查,以下说法正确的是( )
A.这100名七年级学生是总体的一个样本B.该市七年级学生是总体
C.该市每位七年级学生的一分钟跳绳成绩是个体D.100名学生是样本容量
2、下列调查中,最适合采用全面调查(普查)方式的是( )
A.对长江忠县县城段水域污染情况的调查B.对某校九年级一班学生身高情况的调查
C.对某工厂出厂的灯泡使用寿命情况的调查D.对某品牌上市的化妆品质量情况的调查
3、为了调查某校七年级学生的身高情况,在七年级的600名学生中随机抽取了50名学生,下列说法正确的是( )
A.此次调查的总体是600名学生B.此次调查属于全面调查
C.此次调查的个体是被抽取的学生D.样本容量是50
4、下列说法中正确的是( )
A.对“神舟十三号载人飞船”零部件的检查,采用抽样调查的方式
B.为了解某市20000名学生的身高情况,从中抽取了1000名学生的身高信息,其中1000名学生是所抽取的一个样本
C.为了了解全市中学生的睡眠情况,应该采用普查的方式
D.为检验一批电话手表的质量,从中随机抽取了200枚,则样本容量是200
5、为了解某校八年级900名学生的体重情况,从中随机抽取了100名学生的体重进行统计分析.在这个问题中,样本是指( )
A.100B.被抽取的100名学生
C.900名学生的体重D.被抽取的100名学生的体重
6、成都市2021年约有13.15万名考生参加中考,为了了解这13.15万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,以下说法正确的有( )个
①这种调查采用了抽样调查的方式;
②13.15万名考生是总体;
③1000名考生是总体的一个样本;
④每名考生的数学成绩是个体.
A.0B.2C.3D.4
7、下列调查中,调查方式选择不合理的是( )
A.为了了解新型炮弹的杀伤半径,选择抽样调查
B.为了了解某河流的水质情况,选择普查
C.为了了解神舟飞船的设备零件的质量情况,选择普查
D.为了了解一批袋装食品是否含有防腐剂,选择抽样调查
8、根据下面的两幅统计图,你认为哪种说法不合理( )
A.六(2)班女生人数一定比六(1)班多B.两个班女生人数可能同样多
C.六(2)班女生人数可能比六(1)班多D.六(2)班女生人数一定比男生多
9、如图为成都市部分区县森林覆盖率统计图.其中,森林覆盖率低于的区县有( )
A.1个B.2个C.3个D.4个
10、七年级10个班开展“学雷锋做好人好事”活动,为了清楚表明三月份各班做好人好事的件数是多少,最好选用( )
A.折线统计图B.条形统计图
C.扇形统计图D.以上都不对
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、为保证中小学生每天锻炼一小时,某校开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了如图的统计图(1)和图(2),则扇形统计图(2)中表示“足球”项目扇形的圆心角的度数为__.
2、下列调查中,调查方式选择正确的是_____.
①为了了解一批灯泡的使用寿命,选择抽样调查.②为了了解某公园全年的游客流量,选择抽样调查.③为了了解某1000枚炮弹的杀伤半径,选择全面调查.④为了了解一批袋装食品是否有防腐剂,选择全面调查.
3、去年某市有9万名初中毕业生参加升学考试,为了了解这9万名考生的数学成绩,从中取2000名考生数学成绩进行统计分析.在这个抽样中,总体是________,个体是________,样本是________,样本容量是________.
4、某农科所通过大量重复的实验,发现某种子发芽的频率在0.85附近波动,现有1000kg种子中发芽的大约有_______kg.
5、一个扇形统计图中,某部分占总体的百分比为13%,则该部分所对扇形圆心角为______.
三、解答题(5小题,每小题10分,共计50分)
1、为了了解长春市冬季的天气变化情况,热爱气象观察的小明记录了2021年11月份30天的天气情况,具体信息如下:
请你帮助小明同学把以上数据整理成统计图表.
2021年11月份长春市最低气温统计表
(1)补全条形统计图;
(2)2021年11月份长春市最低气温统计表中a= ;b= ;m= .
2、 “十一”黄金周期间,北京故宫游园人数大幅度增加,在7天假期中每天旅游的人数较之前一天的变化情况如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):
(1)若9月30日故宫的游园人数为2.1万人,请你计算这7天中每天的游园人数.
(2)“十一”黄金周期间,北京故宫游园人数最多和最少分别是哪一天?游园人数为多少?
(3)故宫门票是60元一张,请计算出“十·一”黄金周期间,北京故宫的门票总收入(万元).
(4)9月30日的游园人数为2.1万人,用折线统计图表示黄金周期间游园人数情况.
3、某地在冬季经常出现雾霾天气.环保部门派记者更进一步了解“雾霾天气的主要原因”,该记者随机调查了该地名市民(每位市民只选择一个主要原因),并对调查结果进行整理,绘制了如下尚不完整的统计图表.
雾霾天气的主要原因统计表
请根据图表中提供的信息解答下列问题:
(1)填空:a= ;b= ;
(2)扇形统计图中,C组所占的百分比为 %;E组所在扇形的圆心角的度数为 °;
(3)根据以上调查结果,你还能得到什么结论?(写出一条即可)
4、某同学调查了小区内50户人家当年10月份的家庭用水量,结果(单位:)如下:
请你根据上述信息,绘制相应的频数直方图.
5、为了调查居民的生活水平,有关部门对某个地区5个街道的50户居民的家庭存款额进行了调查,数据(单位:万元)如下:
1.6 3.5 2.3 6.5 2.2 1.9 6.8 4.8 5.0 4.7 2.3
1.5 3.1 5.6 3.7 2.2 3.3 5.8 4.3 3.6 3.8 3.0
5.1 7.0 3.1 2.9 4.4 5.8 3.8 3.7 3.3 5.2 4.1
4.2 4.8 3.0 4.0 4.6 6.0 2.4 3.3 6.1 5.0 4.9
3.0 3.1 7.2 1.8 5.0 1.9
将数据适当分组,并绘制相应的频数直方图.
-参考答案-
一、单选题
1、C
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
解:A.这100名七年级学生的一分钟跳绳成绩是总体的一个样本,故该选项不符合题意;
B、该市七年级学生的一分钟跳绳成绩是总体,故该选项不符合题意;
C、该市每位七年级学生的一分钟跳绳成绩是个体,故该选项符合题意;
D、样本容量是100,故该选项不符合题意;
故选:C.
【点睛】
本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
2、B
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【详解】
解:A、对长江忠县县城段水域污染情况的调查适合抽样调查,故不符合题意;
B、对某校九年级一班学生身高情况的调查适合普查,故符合题意;
C、对某工厂出厂的灯泡使用寿命情况的调查适合抽样调查,故不符合题意;
D、对某品牌上市的化妆品质量情况的调查适合抽样调查,故不符合题意;
故选:B.
【点睛】
本题考查了抽样调查和全面调查的区别,解题的关键是掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
3、D
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目,我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
解:A、此次调查的总体是某校七年级学生的身高情况,故本选项不合题意;
B、此次调查属于抽样调查,故本选项不合题意;
C、此次调查的个体是每一名七年级学生的身高情况,故本选项不合题意;
D、样本容量是50.故本选项符合题意.
故选:D.
【点睛】
本题考查了数据的收集,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小,样本容量是样本中包含的个体的数目,不能带单位.
4、D
【解析】
【分析】
根据全面调查、抽样调查、样本和样本容量判断即可.
【详解】
A、∵为了安全,对“神舟十三号载人飞船”零部件的检查必须逐个检查
.对“神舟十三号载人飞船”零部件的检查,不能采用抽样调查的方式,应该采用普查的方式,故A错误;
B、根据样本的定义可知:为了解某市20000名学生的身高情况,从中抽取了1000名学生的身高信息,其中1000名学生的身高信息是所抽取的一个样本,故B错误;
C、∵全市中学生人数太多
,为了了解全市中学生的睡眠情况,不应该采用普查的方式,应该采用抽样调查的方式,故C错误;
D、根据样本容量的定义可知:“为检验一批电话手表的质量,从中随机抽取了200枚,则样本容量是200”是正确的,
故D正确;
故选:D
【点睛】
本题考查简单随机抽样,样本和样本容量等相关概念,掌握相关的概念是解答此题的关键.
5、D
【解析】
【分析】
根据样本的定义进行判断即可.
【详解】
样本是观测或调查的一部分个体,所以样本是指被抽取的100名学生的体重.
故选:D.
【点睛】
本题考查了样本的定义,掌握样本的定义进行判断是解题的关键.
6、B
【解析】
【分析】
总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考察的对象.从而找出总体、个体.
【详解】
解:①成都市2021年约有13.15万名考生参加中考,为了了解这13.15万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,这种调查采用了抽样调查的方式,故说法正确;
②13.15万名考生的数学成绩是总体,故原说法错误;
③1000名考生的数学成绩是总体的一个样本,故原说法错误;
④每名考生的数学成绩是个体,故说法正确.
所以正确的说法有2个.
故选:B.
【点睛】
本题考查的是确定总体、个体和样本.解此类题需要注意考察对象实际应是表示事物某一特征的数据,而非考查的事物.
7、B
【解析】
【分析】
根据调查的不同目的来选择全面调查或抽样调查,再判断四个选项即可.
【详解】
解:A选项,C选项,D选项选择调查方式合理,故A选项,C选项,D选项不符合题意.
B选项,为了了解某河流的水质情况,选择普查耗费人力,物力和时间较多,而选择抽样调查更加节约,且和普查的结果相差不大,故B选项符合题意.
故选:B.
【点睛】
本题考查全面调查和抽样调查,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.
8、A
【解析】
【分析】
根据两个扇形统计图,只能得到两个班级男女生比例的大小,无法确定男生和女生的具体人数,由此即可得.
【详解】
解:∵两个班的人数不知道,
∴无法确定每个班的男生和女生的具体人数,
∴六(2)班女生人数一定比六(1)班多不合理,
故选:A.
【点睛】
题目主要考查从扇形统计图获取信息,理解题意,掌握扇形统计图表示的意义是解题关键.
9、B
【解析】
【分析】
根据直方图即可求解.
【详解】
由图可得森林覆盖率低于的区县有新津县、青白江,共2个
故选B.
【点睛】
此题主要考查统计图的判断,解题的关键是根据直方图找到森林覆盖率低于的区县,进而求解.
10、B
【解析】
【分析】
根据三种统计图的特点,判断即可.
【详解】
解:七年级10个班开展“学雷锋做好人好事”活动,为了清楚表明三月份各班做好人好事的件数是多少,最好选用:条形统计图,
故选:B.
【点睛】
本题考查了统计图的选择,熟练掌握三种统计图的特点是解题的关键.
二、填空题
1、72°
【解析】
【分析】
先算出总人数,再用足球人数占总人数的百分比乘即可得.
【详解】
解:总人数是:20÷40%=50(人),
∵足球的人数为10人,
∴“足球”项目扇形的圆心角的度数为:360°×=72°;
故答案为:72°.
【点睛】
本题考查了扇形统计图,解题的关键的是求出总人数.
2、①②##②①
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【详解】
解:①了解1000个灯泡的使用寿命,具有破坏性,适用于抽样调查,故①正确;
②了解某公园全年的游客流量,工作量大,时间长,故需要用抽样调查,故②正确;
③了解生产的一批炮弹的杀伤半径,具有破坏性的调查,适用于抽样调查,故③错误;
④了解一批袋装食品是否含有防腐剂,具有破坏性的调查,,适用于抽样调查,故④错误;故答案为:①②.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
3、 9万名考生的数学成绩 每名考生的数学成绩 被抽出的2000名考生的数学成绩 2000
【解析】
【分析】
根据抽样中总体、个体、样本以及样本容量的概念解答即可.
【详解】
根据题意,
在这个抽样中,总体是9万名考生的数学成绩,
个体是每名考生的数学成绩,
样本是被抽出的2000名考生的数学成绩,
样本容量是2000.
故答案为:9万名考生的数学成绩;每名考生的数学成绩;被抽出的2000名考生的数学成绩;2000.
【点睛】
本题主要考查了对抽样中总体、个体、样本以及样本容量的理解,属于基础题,掌握总体、个体、样本以及样本容量的概念是解题关键.
4、850
【解析】
【分析】
根据某农科所在相同条件下做某作物种子发芽率的试验表,可得大量重复试验发芽率逐渐稳定在0.85左右,据此求出1000kg种子中大约有多少kg种子是发芽的即可.
【详解】
解:∵大量重复试验发芽率逐渐稳定在0.85左右,
∴1000kg种子中发芽的种子的质量是:1000×0.85=850(kg)
故答案为:850.
【点睛】
此题主要考查了频率的应用,解题的关键是根据题意列出式子进行求解.
5、46.8°
【解析】
【分析】
利用占总体的百分比是,则这部分的圆心角是360度的,即可求出结果.
【详解】
解:该部分所对扇形圆心角为:.
故答案为:.
【点睛】
本题考查扇形统计图中扇形所对圆心角的度数与百分比的关系,熟练掌握扇形所对圆心角的计算方法是解题关键.
三、解答题
1、 (1)见解析
(2)9、6、0.2
【解析】
【分析】
(1)由已知数据知,晴天的有6天,多云的有18天,阴的有5天,小雪的有1天,据此补全图形即可;
(2)由已知数据知,大于等于-10℃小于-5℃的天数a=9,-10℃以下的天数b=6,其对应频率m=6÷30=0.2.
(1)
由已知数据知,晴天的有6天,多云的有18天,阴的有5天,小雪的有1天,
补全图形如下:
(2)
由已知数据知,大于等于-10℃小于-5℃的天数a=9,
-10℃以下的天数b=6,其对应频率m=6÷30=0.2,
故答案为:9、6、0.2.
【点睛】
本题主要考查条形统计图,条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.
2、 (1)10月1日 5.3万人,10月2日 5.9万人,10月3日6.2万人,10月4日6.9万人,10月5日5.6万人,10月6日5.8万人,10月7日3.4万人;(2)游园人数最多的是10月4日,达到6.9万人,最少的是10月7日,3.4万人;(3) 2346万元, (4)见解析
【解析】
【分析】
(1)根据每一天的人数比前一天的变化情况,求出各天的游客人数,
(2)根据(1)的结果进行判断即可,
(3)求出这7天的总游客人数,即可求出门票总收入,
(4)利用描点、连线,画出折线统计图.
【详解】
(1)10月1日 2.1+3.2=5.3万人,
10月2日 5.3+0.6=5.9万人,
10月3日 5.9+0.3=6.2万人,
10月4日 6.2+0.7=6.9万人,
10月5日 6.9-1.3=5.6万人,
10月6日 5.6+0.2=5.8万人,
10月7日 5.8-2.4=3.4万人,
(2)游园人数最多的是10月4日,达到6.9万人,最少的是10月7日,3.4万人,
(3)60×(5.3+5.9+6.2+6.9+5.6+5.8+3.4)=2346万元,
答:北京故宫的门票总收入2346万元.
(4)用折线统计图表示黄金周期间游园人数情况如图所示:
【点睛】
考查正数、负数的意义,折线统计图的意义和制作方法,从统计表中获取数量及数量关系式解决问题的关键.
3、(1)80 40;(2),;(3)答案不唯一,言之有理即可.如:该县大部分市民认为造成雾霾天气的主要原因是汽车尾气排放或工厂污染.
【解析】
【分析】
(1)根据D组频数及其所占百分比求得样本容量,再根据频数=总数×频率求出a.根据各组频数之和等于总数,求出b;
(2)用C组的人数除以总人数即得出其所占百分比,用样本中E组所占百分比乘以即可;
(3)根据题目中的数据推断结论即可,答案不唯一.
【详解】
解:(1)人,
,
,
故答案为:80 ,40;
(2)C组所占的百分比为:,
E组所在扇形的圆心角的度数为:.
故答案为:,;
(3)答案不唯一,言之有理即可.如:该县大部分市民认为造成雾霾天气的主要原因是汽车尾气排放或工厂污染;
【点睛】
本题考查的是统计表和扇形统计图的知识,正确获取图表中的信息并准确进行计算是解题的关键.
4、见解析
【解析】
【分析】
根据所给频数分布表画出相应的频数分布直方图即可.
【详解】
解:频数分布直方图如图所示:
【点睛】
本题考查了认识频数分布表以及画频数分布直方图的能力,利用统计表获取信息时,必须认真观察、分析、研究统计表,才能作出正确的频数分布直方图.
5、见解析
【解析】
【分析】
绘制频数分布直方图的一般步骤为:1、收集数据;2、整理数据;3、分析数据(决定组距、频数);4、绘制频数分布表;5、绘制频数分布直方图,在本题中,由于最大的数据为7.2,最小的数据为1.5,则极差为7.2-1.5=5.7,于是需将数据分为6组,接下来对数据进行分组,统计出每组数据的个数,按照绘制频数分布直方图的方法来作图即可.
【详解】
解:第一步,计算最大值与最小值的差:
在所给的数据中,最大值是7.2,最小值是1.5,
它们的差是7.2-1.5=5.7,
第二步,决定组距与组数:
由于最大值与最小值的差是5.7,
如果取组距为1,那么由于,可分成6组,
组数合适,于是取组距为1,组数为6,
第三步,列频数分布表:
第四步,画频数直方图:
【点睛】
本题考查了绘制频数分布直方图的方法,属于基础题,熟练掌握绘制频数分布直方图的一般步骤是解题关键.
日期
最高气温
最低气温
天气
日期
最高气温
最低气温
天气
11﹣01
4℃
0℃
多云
11﹣16
2℃
﹣2℃
晴
11﹣02
9℃
3℃
阴
11﹣17
6℃
﹣1℃
阴
11﹣03
12℃
2℃
晴
11﹣18
4℃
﹣6℃
多云
11﹣04
15℃
﹣2℃
阴
11﹣19
0℃
﹣6℃
多云
11﹣05
15℃
10℃
多云
11﹣20
0℃
﹣7℃
多云
11﹣06
2℃
﹣6℃
多云
11﹣21
﹣4℃
﹣9℃
阴
11﹣07
﹣3℃
﹣4℃
多云
11﹣22
﹣8℃
﹣12℃
多云
11﹣08
9℃
﹣4℃
多云
11﹣23
﹣8℃
﹣15℃
晴
11﹣09
﹣3℃
﹣6℃
多云
11﹣24
﹣7℃
﹣14℃
晴
11﹣10
﹣2℃
﹣5℃
小雪
11﹣25
﹣5℃
﹣13℃
多云
11﹣11
6℃
2℃
多云
11﹣26
﹣3℃
﹣13℃
多云
11﹣12
﹣1℃
﹣7℃
晴
11﹣27
0℃
﹣1℃
多云
11﹣13
4℃
﹣6℃
多云
11﹣28
6℃
﹣4℃
多云
11﹣14
12℃
9℃
阴
11﹣29
﹣2℃
﹣7℃
多云
11﹣15
2℃
﹣4℃
晴
11﹣30
﹣4℃
﹣11℃
多云
最低气温分组
频数
频率
10℃及10℃以上
大于等于5℃小于10℃
大于等于0℃小于5℃
4
大于等于﹣5℃小于0℃
9
0.3
大于等于﹣10℃小于﹣5℃
a
﹣10℃以下
b
m
日期
1日
2日
3日
4日
5日
6日
7日
人数变化单位:万人
+3.2
+0.6
+0.3
+0.7
-1.3
+0.2
-2.4
组别
主要原因
频数(人数/人)
A
大气气压低,空气不流动
a
B
地面灰尘大,空气湿度低
b
C
汽车尾气排放
100
D
工厂造成的污染
120
E
其他
60
家庭用水量
4.0~5.5
5.5~7.0
7.0~8.5
8.5~10.0
10.0~11.5
11.5~13.0
13.0~14.5
14.5~16.0
家庭数/户
9
12
11
8
5
1
2
2
分组
频数
10
10
11
10
5
4
合计
50
相关试卷
这是一份数学八年级下册第十八章 数据的收集与整理综合与测试课时作业,共21页。试卷主要包含了下列调查方式中,合适的是,下列调查中,最适合采用全面调查等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试当堂达标检测题,共20页。
这是一份数学冀教版第十八章 数据的收集与整理综合与测试巩固练习,共20页。试卷主要包含了下列调查方式,你认为最合适的是等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)