![难点解析冀教版七年级数学下册第十一章 因式分解同步测试试卷01](http://img-preview.51jiaoxi.com/2/3/12719763/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析冀教版七年级数学下册第十一章 因式分解同步测试试卷02](http://img-preview.51jiaoxi.com/2/3/12719763/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析冀教版七年级数学下册第十一章 因式分解同步测试试卷03](http://img-preview.51jiaoxi.com/2/3/12719763/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版七年级下册第十一章 因式分解综合与测试课堂检测
展开冀教版七年级数学下册第十一章 因式分解同步测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,长与宽分别为a、b的长方形,它的周长为14,面积为10,则a3b+2a2b2+ab3的值为( )
A.2560 B.490 C.70 D.49
2、计算的值是( )
A. B. C. D.2
3、下列各式中,从左到右的变形是因式分解的是( )
A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2
C.x2﹣4xy+4y2=(x﹣2y)2 D.x2+1=x(x+)
4、下列运算错误的是( )
A. B. C. D.(a≠0)
5、下列因式分解正确的是( )
A. B.
C. D.
6、下列各式中,正确的因式分解是( )
A.
B.
C.
D.
7、下列从左到右的变形,是分解因式的是( )
A.xy2(x﹣1)=x2y2﹣xy2 B.2a2+4a=2a(a+2)
C.(a+3)(a﹣3)=a2﹣9 D.x2+x﹣5=(x﹣2)(x+3)+1
8、下列各式中能用平方差公式计算的是( )
A.(x+y)(y﹣x) B.(x+y)(y+x)
C.(x+y)(﹣y﹣x) D.(x﹣y)(y﹣x)
9、下列因式分解正确的是( )
A. B.
C. D.
10、把多项式a2﹣9a分解因式,结果正确的是( )
A.a(a+3)(a﹣3) B.a(a﹣9)
C.(a﹣3)2 D.(a+3)(a﹣3)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、分解因式a2-10a+25的结果是______.
2、分解因式:________.(直接写出结果)
3、分解因式:_______.
4、分解因式:________.
5、已知,,则________.
三、解答题(5小题,每小题10分,共计50分)
1、因式分解:(x2+9)2﹣36x2.
2、分解因式:
(1);
(2).
3、因式分解;
(1)ax2+2a2x+a3
(2)(a﹣b)(x﹣y)﹣(b﹣a)(x+y)
4、 ((1)(2)小题计算,(3)(4)小题因式分解)
(1);
(2)(x﹣2y)(3x+2y)﹣;
(3)9(x﹣y)+4(y﹣x) ;
(4) a+2x+.
5、因式分解:
(1)
(2).
-参考答案-
一、单选题
1、B
【解析】
【分析】
利用面积公式得到ab=10,由周长公式得到a+b=7,所以将原式因式分解得出ab(a+b)2.将其代入求值即可.
【详解】
解:∵长与宽分别为a、b的长方形,它的周长为14,面积为10,
∴ab=10,a+b=7,
∴a3b+2a2b2+ab3=ab(a+b)2=10×72=490.
故选:B.
【点睛】
本题主要考查了因式分解和代数式求值,准确计算是解题的关键.
2、B
【解析】
【分析】
直接找出公因式进而提取公因式,进行分解因式即可.
【详解】
解:.
故选:B
【点睛】
此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.
3、C
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A.从左到右的变形不属于因式分解,故本选项不符合题意;
B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;
C.从左到右的变形属于因式分解,故本选项符合题意;
D.等式的右边是分式与整式的积,即从左到右的变形不属于因式分解,故本选项不符合题意;
故选:C.
【点睛】
此题主要考查因式分解的识别,解题的关键是熟知因式分解的意义,把一个多项式转化成几个整式积的形式.
4、A
【解析】
【分析】
根据积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,即可判断.
【详解】
解:A. ,故该选项错误,符合题意;
B. ,故该选项正确,不符合题意;
C. ,故该选项正确,不符合题意;
D. (a≠0),故该选项正确,不符合题意,
故选A.
【点睛】
本题主要考查积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,熟练掌握运算法则是解题的关键.
5、B
【解析】
【分析】
直接利用提取公因式法以及十字相乘法分解因式,进而判断即可.
【详解】
解:A、,故此选项不合题意;
B、,故此选项符合题意;
C、,故此选项不合题意;
D、,不能分解,故此选项不合题意;
故选:B.
【点睛】
本题主要考查了提取公因式法以及十字相乘法分解因式,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
6、B
【解析】
【分析】
直接利用公式法以及提取公因式法分解因式,进而判断得出答案.
【详解】
解:.,故此选项不合题意;
.,故此选项符合题意;
.,故此选项不合题意;
.,故此选项不合题意;
故选:.
【点睛】
本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.
7、B
【解析】
【分析】
根据因式分解的意义对各选项进行逐一分析即可.
【详解】
解:、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;
、符合因式分解的意义,是因式分解,故本选项正确,符合题意;
、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;
、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意.
故选:B.
【点睛】
本题考查的是因式分解的意义,解题的关键是把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.
8、A
【解析】
【分析】
能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反,对各选项分析判断后利用排除法.
【详解】
解:A、(x+y)(y﹣x)=不符合平方差公式的特点,故本选项符合题意;
B、(x+y)(y+x),不符合平方差公式的特点,不能用平方差公式计算,故本选项不合题意;
C、(x+y)(﹣y﹣x)不符合平方差公式的特点,不能用平方差公式计算,故本选项不符合题意;
D、(x﹣y)(y﹣x)不符合平方差公式的特点,不能用平方差公式计算,故本选项不符合题意;
故选A.
【点睛】
本题考查的是应用平方差公式进行计算的能力,掌握平方差公式的结构特征是正确解题的关键.
9、D
【解析】
【分析】
各项分解得到结果,即可作出判断.
【详解】
解:A、,不符合题意;
B、,不符合题意;
C、,不符合题意;
D、因式分解正确,符合题意,
故选:D.
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
10、B
【解析】
【分析】
用提公因式法,提取公因式即可求解.
【详解】
解:a2﹣9a=a(a﹣9).
故选:B.
【点睛】
本题考查了因式分解,用到了提公因式法和公式法,因式分解一般是先考虑提公因式法,再考虑公式法,注意的是,因式分解要进行到再也不能分解为止.
二、填空题
1、(a-5)2
【解析】
【分析】
直接用完全平方公式进行因式分解即可.
【详解】
a2-10a+25=(a-5)2
故答案为:(a-5)2.
【点睛】
此题考查了公式法分解因式,熟记完全平方公式是解本题的关键.
2、2(x-a)(4a-2b-3c)
【解析】
【分析】
提出公因式2(x-a)即可求得结果
【详解】
解:2(x-a)(4a-2b-3c)
故答案为:2(x-a)(4a-2b-3c)
【点睛】
本题考查了提公因式法因式分解,正确的找到公因式是解题的关键.
3、x(x+2y)(x-2y)
【解析】
【分析】
先提取公因式,再用平方差公式进行分解即可.
【详解】
解:x3-4xy2
=x(x2-4y2)
=x(x+2y)(x-2y)
故答案为:x(x+2y)(x-2y)
【点睛】
本题考查了分解因式,分解因式要先提取公因式,再运用公式,分解因式方法可以参考口诀“一提,二套,三分组,十字相乘做辅助”灵活运用所学方法进行分解,注意:分解要彻底.
4、
【解析】
【分析】
先提取公因式-a,再用完全平方公式分解因式得出答案.
【详解】
解:,
故答案为:
【点睛】
本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解因式,分解因式要彻底是解题关键.
5、-3
【解析】
【分析】
将多项式因式分解后,整体代入即可.
【详解】
解:∵,,
∴,
故答案为:-3.
【点睛】
本题主要考查了提取公因式法分解因式,代数式求值,正确提取公因式是解题关键.
三、解答题
1、
【解析】
【分析】
利用平方差公式和完全平方公式分解因式即可.
【详解】
解:
.
【点睛】
本题主要考查了分解因式,解题的关键在于能够熟练掌握完全平方公式和平方差公式.
2、(1);(2)
【解析】
【分析】
(1)提取m,后用完全平方公式分解;
(2)提取a-b,后用平方差公式分解.
【详解】
解:(1)原式
.
(2)原式
.
【点睛】
本题考查了因式分解,熟练掌握先提后用公式的分解顺序是解题的关键.
3、 (1)
(2)
【解析】
【分析】
(1)直接提取公因式,再利用完全平方公式分解因式即可;
(2)直接提取公因式,进而分解因式即可.
【小题1】
解:
;
【小题2】
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确找出公因式是解题关键.
4、(1)-5;(2)2﹣8;(3);(4)a
【解析】
【分析】
(1)根据=2, ,整理计算即可;
(2)利用多项式的乘法法则,完全平方公式展开,合并同类项即可;
(3)根据(y-x)=-(x-y),提取公因式后,套用平方差公式分解即可;
(4) 先提取公因式a,后套用和的完全平方公式分解即可.
【详解】
解:(1)
=2+1-9+1
=-5;
(2)(x﹣2y)(3x+2y)﹣
=3+2xy﹣6xy﹣4﹣+4xy﹣4
=2﹣8;
(3)9(x﹣y)+4(y﹣x)
=
=;
(4)a+2x+
=a(+2ax+)
=a.
【点睛】
本题考查了绝对值,零指数幂,负整数指数幂,完全平方公式,因式分解,熟练掌握零指数幂,负整数指数幂,完全平方公式和公式法分解因式是解题的关键.
5、(1);(2)
【解析】
【分析】
(1)先提取公因式,再利用完全平方公式因式分解;
(2)先利用平方差公式因式分解,再利用完全平方公式因式分解.
【详解】
解:(1)原式=
=;
(2)原式=
=
【点睛】
本题考查综合利用提公因式法和公式法因式分解,一般能提取公因式先提取公因式,再看能否用公式法因式分解.注意:因式分解一定要彻底.
初中数学冀教版七年级下册第十一章 因式分解综合与测试课后复习题: 这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试课后复习题,共16页。试卷主要包含了下列因式分解正确的是,下列变形,属因式分解的是等内容,欢迎下载使用。
2020-2021学年第十一章 因式分解综合与测试当堂检测题: 这是一份2020-2021学年第十一章 因式分解综合与测试当堂检测题,共16页。试卷主要包含了下列各式因式分解正确的是,当n为自然数时,等内容,欢迎下载使用。
初中数学冀教版七年级下册第十一章 因式分解综合与测试一课一练: 这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试一课一练,共15页。试卷主要包含了如果x2+kx﹣10=,下列因式分解错误的是,下列多项式等内容,欢迎下载使用。