![2022年强化训练冀教版七年级数学下册第十一章 因式分解难点解析试卷(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12719402/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版七年级数学下册第十一章 因式分解难点解析试卷(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12719402/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版七年级数学下册第十一章 因式分解难点解析试卷(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12719402/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版七年级下册第十一章 因式分解综合与测试课后练习题
展开
这是一份冀教版七年级下册第十一章 因式分解综合与测试课后练习题,共16页。
冀教版七年级数学下册第十一章 因式分解难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式从左到右的变形中,属于因式分解的是( )A. B.C. D.2、把分解因式的结果是( ).A. B.C. D.3、下列因式分解正确的是( )A.x2-4x+4=x(x-4)+4 B.9-6(m-n)+(n-m)2=(3-m+n)2C.4x2+2x+1=(2x+1)2 D.x4-y4=(x2+y2)(x2-y2)4、已知m=1﹣n,则m3+m2n+2mn+n2的值为( )A.﹣2 B.﹣1 C.1 D.25、下列从左到右的变形,是分解因式的是( )A.xy2(x﹣1)=x2y2﹣xy2 B.2a2+4a=2a(a+2)C.(a+3)(a﹣3)=a2﹣9 D.x2+x﹣5=(x﹣2)(x+3)+16、下列从左边到右边的变形,属于因式分解的是( )A.x2﹣x﹣6=(x+2)(x﹣3) B.x2﹣2x+1=x(x﹣2)+1C.x2+y2=(x+y)2 D.(x+1)(x﹣1)=x2﹣17、下列各式由左边到右边的变形中,是因式分解的是( )A.10x2﹣5x=5x(2x﹣1) B.x2﹣4x+4=x(x﹣4)+4C.a(x+y)=ax+ay D.x2﹣16+3x=(x+4)(x﹣4)+3x8、下列从左边到右边的变形,是因式分解的是( )A.(3﹣x)(3+x)=9﹣x2 B.x2+y2=(x+y)(x﹣y)C.x2﹣x=x(x﹣1) D.2yz﹣y2z+z=y(2z﹣yz)+z9、已知a2-2a-1=0,则a4-2a3-2a+1等于( )A.0 B.1 C.2 D.310、下列多项式不能用公式法因式分解的是( )A.a2+4a+4 B.a2﹣a+1 C.﹣a2﹣9 D.a2﹣1第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:﹣8a3b+8a2b2﹣2ab3=_____.2、当x=4,a+b=-3时,代数式:ax+bx的值为________.3、分解因式:2x2-4x=_____.4、分解因式_______.5、因式分解:-x+xy-y=________.三、解答题(5小题,每小题10分,共计50分)1、分解因式:2x3+12x2y+18xy2.2、因式分解:(x2+9)2﹣36x2.3、因式分解:(1)(2).4、因式分解:(1)(2)5、因式分解;(1)ax2+2a2x+a3(2)(a﹣b)(x﹣y)﹣(b﹣a)(x+y) -参考答案-一、单选题1、B【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:、是单项式的乘法,不是因式分解,故本选项不符合题意;、是因式分解,利用了完全平方差公式进行了因式分解,故本选项符合题意; 、是整式的乘法,不是因式分解,故本选项不符合题意;、因式分解错误,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的定义,解题的关键是能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.2、B【解析】【分析】先用平方差公式分解因式,在提取公因式即可得出结果.【详解】解:a2+2a-b2-2b,=(a2-b2)+(2a-2b),=(a+b)(a-b)+2(a-b),=(a-b)(a+b+2),故选:B.【点睛】此题主要考查了提取公因式法和公式法分解因式,正确找出公因式是解题关键.3、B【解析】【分析】利用公式法进行因式分解判断即可.【详解】解:A、,故A错误,B、9-6(m-n)+(n-m)2=(3-m+n)2,故B正确,C、4x2+2x+1,无法因式分解,故C错误,D、,因式分解不彻底,故D错误,故选:B.【点睛】本题主要是考查了利用公式法进行因式分解,一定要熟练掌握完全平方公式和平方差公式的形式,另外因式分解一定要彻底.4、C【解析】【分析】先化简代数式,再代入求值即可;【详解】∵m=1﹣n,∴m+n=1,∴m3+m2n+2mn+n2=m2(m+n)+2mn+n2=m2+2mn+n2=(m+n)2=12=1,故选:C.【点睛】本题主要考查了代数式求值,准确计算是解题的关键.5、B【解析】【分析】根据因式分解的意义对各选项进行逐一分析即可.【详解】解:、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;、符合因式分解的意义,是因式分解,故本选项正确,符合题意;、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意.故选:B.【点睛】本题考查的是因式分解的意义,解题的关键是把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.6、A【解析】【分析】把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,根据概念逐一判断即可.【详解】解:x2﹣x﹣6=(x+2)(x﹣3)属于因式分解,故A符合题意;x2﹣2x+1=x(x﹣2)+1,右边没有化为整式的积的形式,不是因式分解,故B不符合题意;x2+y2=(x+y)2的左右两边不相等,不能分解因式,不是因式分解,故C不符合题意;(x+1)(x﹣1)=x2﹣1是整式的乘法运算,不是因式分解,故D不符合题意;故选A【点睛】本题考查的是因式分解的概念,掌握“利用因式分解的概念判断代数变形是否是因式分解”是解题的关键.7、A【解析】【详解】因式分解就是把多项式分解成整式的积的形式,依据定义即可判断.【分析】解:A、正确;B、结果不是整式的积的形式,故不是因式分解,选项错误;C、结果不是整式的积的形式,故不是因式分解,选项错误;D、结果不是整式的积的形式,故不是因式分解,选项错误.故选:A.【点睛】本题考查了因式分解的定义,理解因式分解的结过是整式的积的形式是解题的关键.8、C【解析】【分析】根据因式分解的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式),进行判断即可.【详解】解:A、(3﹣x)(3+x)=9﹣x2属于整式的乘法运算,不是因式分解,不符合题意;B、,原式错误,不符合题意;C、x2﹣x=x(x﹣1),属于因式分解,符合题意;D、2yz﹣y2z+z=,原式分解错误,不符合题意;故选:C.【点睛】本题考查了因式分解的定义,熟记因式分解的定义即把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式)是解本题的关键.9、C【解析】【分析】由a2﹣2a﹣1=0,得出a2﹣2a=1,逐步分解代入求得答案即可.【详解】解:∵a2﹣2a﹣1=0,∴a2﹣2a=1,∴a4﹣2a3﹣2a+1=a2(a2﹣2a)﹣2a+1=a2﹣2a+1=1+1=2.故选:C.【点睛】此题考查因式分解的实际运用,分组分解和整体代入是解决问题的关键.10、C【解析】【分析】直接利用完全平方公式以及平方差公式分别分解因式,进而得出答案.【详解】解:A中,故此选项不合题意;B中,故此选项不合题意;C中无法分解因式,故此选项符合题意;D中,故此选项不合题意;故选:C.【点睛】本题考查了利用乘法公式进行因式分解.解题的关键在于对完全平方公式和平方差公式的灵活运用.二、填空题1、﹣2ab(2a﹣b)2【解析】【分析】先提取公因式-2ab,再对余下的多项式利用完全平方公式继续分解.【详解】解:原式=﹣2ab(4a2﹣4ab+b2)=﹣2ab(2a﹣b)2,故答案为:﹣2ab(2a﹣b)2.【点睛】本题考查提公因式法,公式法分解因式,解题的关键在于提取公因式后要继续进行二次分解因式.2、-12【解析】【分析】本题可先代入x的值得4(a+b),再把a+b=-3整体代入求值即可.【详解】解:∵x=4,a+b=-3∴ax+bx故答案为:-12【点睛】本题主要考查了因式分解的应用,整理出已知条件的形式是解题的关键,注意整体代换的思想.3、##【解析】【分析】根据提公因式法因式分解即可【详解】解:2x2-4x=故答案为:【点睛】本题考查了提公因式法因式分解,掌握因式分解的方法是解题的关键.4、【解析】【分析】把原式化为,再利用完全平方公式分解因式即可.【详解】解: 故答案为:【点睛】本题考查的是利用完全平方公式分解因式,掌握“”是解本题的关键.5、【解析】【分析】综合利用提公因式法和完全平方公式进行因式分解即可得.【详解】解:原式,故答案为:.【点睛】本题考查了因式分解,熟练掌握因式分解的方法是解题关键.三、解答题1、2x(x+3y)2【解析】【分析】先提公因式,进而根据完全平方公式因式分解即可.【详解】解:2x3+12x2y+18xy2=2x(x2+6xy+9y2)=2x(x+3y)2.【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.2、【解析】【分析】利用平方差公式和完全平方公式分解因式即可.【详解】解: .【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握完全平方公式和平方差公式.3、(1);(2)【解析】【分析】(1)先提取公因式,再利用完全平方公式因式分解;(2)先利用平方差公式因式分解,再利用完全平方公式因式分解.【详解】解:(1)原式==;(2)原式==【点睛】本题考查综合利用提公因式法和公式法因式分解,一般能提取公因式先提取公因式,再看能否用公式法因式分解.注意:因式分解一定要彻底.4、 (1)(2)-4(6a+b)( a+6b)【解析】【分析】(1)用因式分解法分解即可;(2)用平方差公式分解即可;(1)解:===;(2)解:===(5a-5b+7a+7b)(5a-5b-7a-7b)=(12a+2b)( -2a-12b)=-4(6a+b)( a+6b) .【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.5、 (1)(2)【解析】【分析】(1)直接提取公因式,再利用完全平方公式分解因式即可;(2)直接提取公因式,进而分解因式即可.【小题1】解: ;【小题2】【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确找出公因式是解题关键.
相关试卷
这是一份初中冀教版第十一章 因式分解综合与测试综合训练题,共17页。试卷主要包含了下列运算错误的是,下列因式分解正确的是.,下列多项式中有因式x﹣1的是,若a,把代数式分解因式,正确的结果是等内容,欢迎下载使用。
这是一份初中冀教版第十一章 因式分解综合与测试课后测评,共18页。试卷主要包含了下列分解因式正确的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试一课一练,共15页。试卷主要包含了如果x2+kx﹣10=,下列因式分解错误的是,下列多项式等内容,欢迎下载使用。