初中第十一章 因式分解综合与测试精练
展开
这是一份初中第十一章 因式分解综合与测试精练,共18页。试卷主要包含了下列因式分解正确的是,当n为自然数时,,把分解因式的结果是.等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、对于有理数a,b,c,有(a+100)b=(a+100)c,下列说法正确的是( )A.若a≠﹣100,则b﹣c=0 B.若a≠﹣100,则bc=1C.若b≠c,则a+b≠c D.若a=﹣100,则ab=c2、下列各式从左至右是因式分解的是( )A. B.C. D.3、下列各式中,从左到右的变形是因式分解的是( )A. B.C. D.4、下列因式分解正确的是( )A.16m2-4=(4m+2)(4m-2) B.m4-1=(m2+1)(m2-1)C.m2-6m+9=(m-3)2 D.1-a2=(a+1)(a-1)5、当n为自然数时,(n+1)2﹣(n﹣3)2一定能( )A.被5整除 B.被6整除 C.被7整除 D.被8整除6、下列多项式能使用平方差公式进行因式分解的是( )A. B. C. D.7、下列从左边到右边的变形中,是因式分解的是( )A. B.C. D.8、下列从左到右的变形属于因式分解的是( )A.x2+2x+1=x(x+2)+1 B.﹣7ab2c3=﹣abc•7bc2C.m(m+3)=m2+3m D.2x2﹣5x=x(2x﹣5)9、把分解因式的结果是( ).A. B.C. D.10、下列等式从左到右的变形是因式分解的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、因式分解:-x+xy-y=________.2、已知x2+mx+16能用完全平方公式因式分解,则m的值为 ___.3、下列因式分解正确的是________(填序号)①; ②;③; ④4、分解因式:__________.5、因式分解:(1)______; (2)______;(3)______; (4)______.三、解答题(5小题,每小题10分,共计50分)1、(1)计算:(2)因式分解:2、因式分解:(1)(2)(3)3、已知,.求值:(1);(2).4、对于任意的两位数m=,满足1≤a≤5,0≤b≤4,a≥b,我们称这样的数为“兄弟数”.将m的十位数字与个位数字之和,放在m的左侧,得到一个新的三位数s1,放在m的两个数字中间得到一个新的三位数s2;将m的十位数字与个位数字之差,放在m的右侧得到一个新的三位数t1,放在m的两个数字中间得到一个新的三位数t2,用s1与t1的和减去s2与t2的和的差除以9的商记为F(m).例如,m=41,s1=541,s2=451,t1=413,t2=431,所以F(41)==8(1)计算:F(22);F(53);(2)若p,q都是“兄弟数”,其中p=10x+1,q=51+y(1≤x≤9,0≤y≤9,x,y是整数),规定:,当12F(p)+F(q)=139时,求K的最大值.5、分解因式:. -参考答案-一、单选题1、A【解析】【分析】将等式移项,然后提取公因式化简,根据乘法等式的性质,求解即可得.【详解】解:,,,∴或,即:或,A选项中,若,则正确;其他三个选项均不能得出,故选:A.【点睛】题目主要考查利用因式分解化简等式,熟练掌握因式分解的方法是解题关键.2、A【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A、,等式从左到右的变形属于因式分解,故本选项符合题意;B、,等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;C、,是整式的乘法,不是因式分解,故本选项不符合题意;D、,是整式的乘法,不是因式分解,故本选项不符合题意.故选:A.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.3、C【解析】【分析】根据因式分解的定义判断即可.【详解】解:因式分解即把一个多项式化成几个整式的积的形式.A. ,不是几个整式的积的形式,A选项不是因式分解;B. ,不是几个整式的积的形式,B选项不是因式分解C. ,符合因式分解的定义,C是因式分解. D. ,不是几个整式的积的形式,D选项不是因式分解;故选C【点睛】本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式的变形叫因式分解,等号的左边是一个多项式,右边是几个整式的积,正确理解因式分解的定义是解题的关键.4、C【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义即可求解.【详解】解:A、16m2-4=4(4 m2-1)=4(m+1)(m-1),故该选项错误;B、m4-1=(m2+1)(m2-1)=(m+1)(m-1)(m2+1),故该选项错误;C、m2-6m+9=(m-3)2,故该选项正确;D、1-a2=(a+1)(1-a),故该选项错误;故选:C.【点睛】本题考查了因式分解的意义,属于基础题,关键是掌握因式分解的定义.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.5、D【解析】【分析】先把(n+1)2﹣(n﹣3)2分解因式可得结果为:从而可得答案.【详解】解: (n+1)2﹣(n﹣3)2 n为自然数所以(n+1)2﹣(n﹣3)2一定能被8整除,故选D【点睛】本题考查的是利用平方差公式分解因式,掌握“”是解题的关键.6、B【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断即可求解.【详解】解:A、,不能进行因式分解,不符合题意;B、﹣m2+1=1﹣m2=(1+m)(1﹣m),可以使用平方差公式进行因式分解,符合题意;C、,不能使用平方差公式进行因式分解,不符合题意;D、,不能进行因式分解,不符合题意;故选:B.【点睛】本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.平方差公式:a2﹣b2=(a+b)(a﹣b).7、A【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A.是因式分解,故本选项符合题意;B.等式的左边不是多项式,所以不是因式分解,故本选项不合题意; C.等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;D.等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;故选:A.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.8、D【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.由定义判断即可.【详解】解:A.x2+2x+1=(x+1)2,故A不符合题意;B.-7ab2c3是单项式,不存在因式分解,故B不符合题意;C.m(m+3)=m2+3m是单项式乘多项式,故C不符合题意;D.2x2-5x=x(2x-5)是因式分解,故D符合题意;故选:D.【点睛】本题考查因式分解的意义,熟练掌握因式分解的定义,能够根据所给形式判断是否符合因式分解的变形是解题的关键.9、B【解析】【分析】先用平方差公式分解因式,在提取公因式即可得出结果.【详解】解:a2+2a-b2-2b,=(a2-b2)+(2a-2b),=(a+b)(a-b)+2(a-b),=(a-b)(a+b+2),故选:B.【点睛】此题主要考查了提取公因式法和公式法分解因式,正确找出公因式是解题关键.10、A【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A.把一个多项式化为几个整式的积的形式,原变形是因式分解,故此选项符合题意;B.等式的左边不是多项式,原变形不是因式分解,故此选项不符合题意;C.不是把一个多项式化为几个整式的积的形式,原变形不是因式分解,故此选项不符合题意; D.原变形是整式的乘法,不是因式分解,故此选项不符合题意;故选:A【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.二、填空题1、【解析】【分析】综合利用提公因式法和完全平方公式进行因式分解即可得.【详解】解:原式,故答案为:.【点睛】本题考查了因式分解,熟练掌握因式分解的方法是解题关键.2、【解析】【分析】利用完全平方公式的结构特征判断,确定出m的值即可得到答案.【详解】解:∵要使得能用完全平方公式分解因式,∴应满足,∵,∴,故答案为:.【点睛】此题考查了因式分解-运用公式法,熟练掌握因式分解的方法、完全平方公式是解本题的关键.3、①④##④①【解析】【分析】根据因式分解的提公因式法及公式法对各式子计算即可得.【详解】解:①,正确;②,计算错误;③,计算错误;④,正确;故答案为:①④.【点睛】题目主要考查因式分解的方法:提公因式法和公式法,熟练掌握两种方法是解题关键.4、【解析】【分析】先提出公因式,再利用平方差公式分解,即可求解.【详解】解:.故答案为:【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法,并会灵活选用合适的方法解答是解题的关键.5、 【解析】【分析】把一个多项式化成几个整式积的形式叫做这个多项式的因式分解,由此定义因式分解即可.【详解】(1)由平方差公式有(2)由完全平方公式有(3)提取公因式a有(4)由十字相乘法分解因式有故答案为:;;;.【点睛】本题考查了因式分解,常见因式分解的方式有运用平方差公式、运用完全平方公式、提取公因式、十字相乘法,灵活选择因式分解的方式是解题的关键.三、解答题1、(1)9-4a2 ;(2)xy(x-1)2 .【解析】【分析】(1)利用平方差公式计算;(2)先提取公因式xy,再根据完全平方公式分解因式.【详解】(1)计算(2a-3(-2a-3)解:(2a-3)(-2a-3)=(-3)2-(2a)2=9-4a2;(2)因式分解:x3y-2x2y+xy解:x3y-2x2y+xy=xy(x2-2x+1)=xy(x-1)2.【点睛】此题考查了计算能力,正确掌握整式乘法的平方差公式、因式分解的方法是解题的关键.2、 (1)2a(a2+3b);(2)5(x+y)(x﹣y);(3)﹣3(x﹣y)2.【解析】【分析】(1)直接提公因式2a即可;(2)先提公因式,再利用平方差公式即可;(3)先提公因式,再利用完全平方公式即可.(1)解:=2a(a2+3b);(2)解:(2)原式=5(x2﹣y2)=5(x+y)(x﹣y);(3)解:(3)原式=﹣3(x2﹣2xy+y2)=﹣3(x﹣y)2.【点睛】本题考查提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是正确应用的前提.3、(1);(2)【解析】【分析】(1)把两个等式相减,可得:再移项把等式的左边分解因式,结合 从而可得答案;(2)由可得:由,可得再把分解因式即可得到答案.【详解】解:(1) ,, 则 (2) , 【点睛】本题考查的是因式分解的应用,求解代数式的值,掌握“利用提公因式,平方差公式分解因式及整体代入法求解代数式的值”是解题的关键.4、 (1)22;31(2)【解析】【分析】(1)根据例题,分别求出s1,s2,t1,t2代入即可;(2)由p,q都是“兄弟数”,可以进一步确定x与y的范围为1≤x≤5,0≤y≤3,可以确定p与q的所有取值,再由12F(p)+F(q)=139进行验证即可确定符合条件的F(P),F(q)即可解题.(1)∵,∴ ∴;∵ ∴∴;(2)∵p,q都是“兄弟数”,∴1≤x≤5,0≤y≤3,∴p为11,21,31,41,51;q为51,52,53,54;∴F(11)=11,F(21)=10,F(31)=9,F(41)=8,F(51)=7;F(52)=19,F(54)=43;∵12F(p)+F(q)=139,∴F(P)=11,F(q)=7;F(p)=10,F(q)=19;F(p)=9,F(q)=31;F(p)=8,F(q)=43;∵,∴K的值分别为,∴K的最大值为.【点睛】本题考查因式分解的应用;能够正确理解题意,根据已知条件逐步缩小p与q的范围,确定满足条件的p与q是解题的关键.5、.【解析】【分析】综合利用提公因式法和完全平方公式进行因式分解即可得.【详解】解:原式.【点睛】本题考查了因式分解,熟练掌握因式分解的各方法是解题关键.
相关试卷
这是一份数学冀教版第十一章 因式分解综合与测试同步测试题,共16页。试卷主要包含了已知x,y满足,则的值为,下列因式分解正确的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试课时作业,共17页。试卷主要包含了下列变形,属因式分解的是,把代数式分解因式,正确的结果是等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试同步测试题,共20页。试卷主要包含了下列因式分解正确的是,已知c<a<b<0,若M=|a,下列多项式不能因式分解的是,下列因式分解中,正确的是等内容,欢迎下载使用。