冀教版七年级下册第十一章 因式分解综合与测试复习练习题
展开这是一份冀教版七年级下册第十一章 因式分解综合与测试复习练习题,共18页。试卷主要包含了下列运算错误的是,当n为自然数时,等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解定向训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列各式中,从左到右的变形是因式分解的是( )
A. B.
C. D.
2、把多项式a2﹣9a分解因式,结果正确的是( )
A.a(a+3)(a﹣3) B.a(a﹣9)
C.(a﹣3)2 D.(a+3)(a﹣3)
3、小东是一位密码爱好者,在他的密码手册中有这样一条信息:、、、、、依次对应下列六个字:科、爱、勤、我、理、学,现将因式分解,其结果呈现的密码信息可能是( ).A.勤学 B.爱科学 C.我爱理科 D.我爱科学
4、下列从左边到右边的变形中,是因式分解的是( )
A. B.
C. D.
5、因式分解a2b﹣2ab+b正确的是( )
A.b(a2﹣2a) B.ab(a﹣2) C.b(a2﹣2a+1) D.b(a﹣1)2
6、判断下列不能运用平方差公式因式分解的是( )
A.﹣m2+4 B.﹣x2–y2
C.x2y2﹣1 D.(m﹣a)2﹣(m+a)2
7、下列运算错误的是( )
A. B. C. D.(a≠0)
8、当n为自然数时,(n+1)2﹣(n﹣3)2一定能( )
A.被5整除 B.被6整除 C.被7整除 D.被8整除
9、下列各式从左到右的变形中,是因式分解的为( )
A.x(a﹣b)=ax﹣bx B.x2﹣3x+1=x(x﹣3)+1
C.x2﹣4=(x+2)(x﹣2) D.m+1=x(1+)
10、把分解因式的结果是( ).
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、分解因式:a3﹣2a2b+ab2=___.
2、把多项式-27分解因式的结果是________.
3、已知a=,则a2﹣2a﹣3的值为_______.
4、分解因式______.
5、因式分解:2a2-4a-6=________.
三、解答题(5小题,每小题10分,共计50分)
1、 ((1)(2)小题计算,(3)(4)小题因式分解)
(1);
(2)(x﹣2y)(3x+2y)﹣;
(3)9(x﹣y)+4(y﹣x) ;
(4) a+2x+.
2、材料1:对于任意一个各个数位上的数字均不相等且均不为零的三位自然数,重新排列各个数位上的数字可得到一个最大数和一个最小数,规定.
例如,.
材料2:对于一个各个数位上的数字均不相等的三位自然数,若的十位数字分别小于的百位数字与个位数字,则称为凹数.例如,因为,,所以是凹数.
(1)填空: ;
(2)判断是否是凹数,并说明理由;
(3)若三位自然数(其中,,,、、均为整数)是凹数,且的百位数字大于个位数字,,求满足条件的所有三位自然数的值.
3、因式分解:(x2+9)2﹣36x2.
4、阅读下面材料:小颖这学期学习了轴对称的知识,知道了像角、等腰三角形、正方形、圆等图形都是轴对称图形,类比这一特性,小颖发现像等代数式,如果任意交换两个字母的位置,式子的值都不变.太神奇了!于是她把这样的式子命名为神奇对称式,她还发现像等神奇对称式都可以用表示.例如:,.于是小颖把和称为基本神奇对称式,请根据以上材料解决下列问题:
(1)①,②,③,④中,属于神奇对称式的是_______(填序号);
(2)已知.
①若,则神奇对称式_______;
②若,求神奇对称式的最小值.
5、分解因式:2x3+12x2y+18xy2.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据因式分解的定义判断即可.
【详解】
解:因式分解即把一个多项式化成几个整式的积的形式.
A. ,不是几个整式的积的形式,A选项不是因式分解;
B. ,不是几个整式的积的形式,B选项不是因式分解
C. ,符合因式分解的定义,C是因式分解.
D. ,不是几个整式的积的形式,D选项不是因式分解;
故选C
【点睛】
本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式的变形叫因式分解,等号的左边是一个多项式,右边是几个整式的积,正确理解因式分解的定义是解题的关键.
2、B
【解析】
【分析】
用提公因式法,提取公因式即可求解.
【详解】
解:a2﹣9a=a(a﹣9).
故选:B.
【点睛】
本题考查了因式分解,用到了提公因式法和公式法,因式分解一般是先考虑提公因式法,再考虑公式法,注意的是,因式分解要进行到再也不能分解为止.
3、C
【解析】
【分析】
利用平方差公式,将多项式进行因式分解,即可求解.
【详解】
解:
∵、、、依次对应的字为:科、爱、我、理,
∴其结果呈现的密码信息可能是我爱理科.
故选:C
【点睛】
本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法是解题的关键.
4、A
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A.是因式分解,故本选项符合题意;
B.等式的左边不是多项式,所以不是因式分解,故本选项不合题意;
C.等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;
D.等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;
故选:A.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
5、D
【解析】
【分析】
先提取公因式,再用完全平方公式分解因式即可.
【详解】
解:a2b﹣2ab+b
=b(a2﹣2a+1)
=b(a﹣1)2.
故选:D.
【点睛】
本题考查的是因式分解,掌握“提公因式与公式法分解因式”是解本题的关键. 注意分解因式要彻底.
6、B
【解析】
【分析】
根据平方差公式:进行逐一求解判断即可.
【详解】
解:A、,能用平方差公式分解因式,不符合题意;
B、,不能用平方差公式分解因式,符合题意;
C、,能用平方差公式分解因式,不符合题意;
D、能用平方差公式分解因式,不符合题意;
故选B.
【点睛】
本题主要考查了平方差公式分解因式,解题的关键在于能够熟练掌握平方差公式.
7、A
【解析】
【分析】
根据积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,即可判断.
【详解】
解:A. ,故该选项错误,符合题意;
B. ,故该选项正确,不符合题意;
C. ,故该选项正确,不符合题意;
D. (a≠0),故该选项正确,不符合题意,
故选A.
【点睛】
本题主要考查积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,熟练掌握运算法则是解题的关键.
8、D
【解析】
【分析】
先把(n+1)2﹣(n﹣3)2分解因式可得结果为:从而可得答案.
【详解】
解: (n+1)2﹣(n﹣3)2
n为自然数
所以(n+1)2﹣(n﹣3)2一定能被8整除,
故选D
【点睛】
本题考查的是利用平方差公式分解因式,掌握“”是解题的关键.
9、C
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
解:A、是整式的乘法,故A错误,不符合题意;
B、没把一个多项式转化成几个整式积的形式,故B错误,不符合题意;
C、把一个多项式转化成几个整式积的形式,故C正确,符合题意;
D、等号左右两边式子不相等,故D错误,不符合题意;
故选C
【点睛】
本题考查了因式分解的意义,明确因式分解的结果应是整式的积的形式是解题的关键.
10、B
【解析】
【分析】
先用平方差公式分解因式,在提取公因式即可得出结果.
【详解】
解:a2+2a-b2-2b,
=(a2-b2)+(2a-2b),
=(a+b)(a-b)+2(a-b),
=(a-b)(a+b+2),
故选:B.
【点睛】
此题主要考查了提取公因式法和公式法分解因式,正确找出公因式是解题关键.
二、填空题
1、
【解析】
【分析】
先提取公因式a,再利用完全平方公式因式分解.
【详解】
解:,
故答案为:.
【点睛】
本题考查综合利用提公因式法和公式法因式分解.一般有公因式先提取公因式,再看是否能用公式法因式分解.
2、3(m+3)(m-3)
【解析】
【分析】
先提取公因数3,后利用平方差公式分解即可.
【详解】
∵-27
=3()
=3()
=3(m+3)(m-3),
故答案为:3(m+3)(m-3).
【点睛】
本题考查了因式分解,熟练掌握先提取公因式,后用公式法分解的基本思路是解题的关键.
3、-2
【解析】
【分析】
将所求算式因式分解,再将代入,整理,最后利用平方差公式计算即可.
【详解】
解: ,
将代入得:
.
故答案为:-2.
【点睛】
本题考查因式分解,代数式求值以及平方差公式.利用整体代入的思想是解答本题的关键.
4、2a2(a+3)(a−3)
【解析】
【分析】
先提公因式2a2,再利用平方差公式进行因式分解即可.
【详解】
解:原式=2a2(a2−9)=2a2(a+3)(a−3),
故答案为:2a2(a+3)(a−3).
【点睛】
本题考查提公因式法,公式法分解因式,掌握提公因式法和平方差公式是正确解答的关键.
5、2(a-3)(a+1)## 2(a+1)(a-3)
【解析】
【分析】
提取公因式2,再用十字相乘法分解因式即可.
【详解】
解:2a2-4a-6=2(a2-2a-3)=2(a-3)(a+1)
故答案为:2(a-3)(a+1)
【点睛】
本题考查了本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法或十字相乘法分解因式,分解因式要彻底是解题关键.
三、解答题
1、(1)-5;(2)2﹣8;(3);(4)a
【解析】
【分析】
(1)根据=2, ,整理计算即可;
(2)利用多项式的乘法法则,完全平方公式展开,合并同类项即可;
(3)根据(y-x)=-(x-y),提取公因式后,套用平方差公式分解即可;
(4) 先提取公因式a,后套用和的完全平方公式分解即可.
【详解】
解:(1)
=2+1-9+1
=-5;
(2)(x﹣2y)(3x+2y)﹣
=3+2xy﹣6xy﹣4﹣+4xy﹣4
=2﹣8;
(3)9(x﹣y)+4(y﹣x)
=
=;
(4)a+2x+
=a(+2ax+)
=a.
【点睛】
本题考查了绝对值,零指数幂,负整数指数幂,完全平方公式,因式分解,熟练掌握零指数幂,负整数指数幂,完全平方公式和公式法分解因式是解题的关键.
2、 (1)7
(2)是凹数,理由见解析
(3)
【解析】
【分析】
(1)根据提供的新定义运算法则进行运算即可;
(2)根据凹数的定义进行判断即可;
(3)由是凹数,结合已知条件可得 再求解 代入,从而可求解: 得到 结合为正整数,从而可得答案.
(1)
解:
故答案为:7
(2)
解:因为的十位数字是3,
而
所以是凹数.
(3)
解: 是凹数,
而
,
整理得: 即
解得:
为正整数,则或或
所以满足条件的所有三位自然数为:
【点睛】
本题考查的是新定义运算,有理数的混合运算,乘法分配律分应用,利用完全平方公式分解因式,非负数的性质,理解新定义,逐步运算得到解下一步的条件是解本题的关键.
3、
【解析】
【分析】
利用平方差公式和完全平方公式分解因式即可.
【详解】
解:
.
【点睛】
本题主要考查了分解因式,解题的关键在于能够熟练掌握完全平方公式和平方差公式.
4、 (1)①④
(2)①;②
【解析】
【分析】
(1)神奇对称式是指任意交换两个字母的位置,式子的值都不变的代数式;由定义可知,交换①②③中④中、、的位置,若值不变则符合题意.
(2)①将代入中求得的值,代入求解即可.②将代入中求得的值,由求出的取值范围;将进行配方得将的最小值代入即可.
(1)
解:将①②③中交换位置可得
①,符合题意;
②,不符合题意;
③,不符合题意;
④交换的位置,同理交换其他两个仍成立,符合题意;
故答案为:①④.
(2)
解:①
或
代入得
故答案为:.
②,
有
或
∴神奇对称式的最小值为.
【点睛】
本题考查了因式分解,完全平方公式,不等式等知识.解题的关键在于因式分解得到m、n的关系,不等式求出代数式m+n的取值范围,配完全平方表示出所求代数式的形式.
5、2x(x+3y)2
【解析】
【分析】
先提公因式,进而根据完全平方公式因式分解即可.
【详解】
解:2x3+12x2y+18xy2
=2x(x2+6xy+9y2)
=2x(x+3y)2.
【点睛】
本题考查了因式分解,掌握因式分解的方法是解题的关键.
相关试卷
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试随堂练习题,共19页。试卷主要包含了把多项式分解因式,其结果是,下列因式分解中,正确的是,下列分解因式正确的是等内容,欢迎下载使用。
这是一份初中数学第十一章 因式分解综合与测试课后复习题,共16页。
这是一份冀教版七年级下册第十一章 因式分解综合与测试精练,共16页。试卷主要包含了下列因式分解正确的是,若a,分解因式2a2等内容,欢迎下载使用。