终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度强化训练冀教版七年级数学下册第十一章 因式分解月考试题(名师精选)

    立即下载
    加入资料篮
    2021-2022学年度强化训练冀教版七年级数学下册第十一章 因式分解月考试题(名师精选)第1页
    2021-2022学年度强化训练冀教版七年级数学下册第十一章 因式分解月考试题(名师精选)第2页
    2021-2022学年度强化训练冀教版七年级数学下册第十一章 因式分解月考试题(名师精选)第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版七年级下册第十一章 因式分解综合与测试课后测评

    展开

    这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试课后测评,共18页。试卷主要包含了下列因式分解正确的是,下列因式分解错误的是,对于有理数a,b,c,有等内容,欢迎下载使用。
    冀教版七年级数学下册第十一章 因式分解月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列因式分解正确的是(       A. B.C. D.2、下列等式中,从左到右是因式分解的是(             A. B.C. D.3、把多项式分解因式,下列结果正确的是(       A. B.C. D.4、对于一个图形,通过两种不同的方法计算它的面积,可以得到一个等式,例如图①可以得到用完全平方公式进行因式分解的等式a2+2abb2=(ab2,如图②是由4个长方形拼成的一个大的长方形,用不同的方式表示此长方形的面积,由此不能得到的因式分解的等式是(       A.amn)+bmn)=(ab)(mnB.mab)+nab)=(ab)(mnC.ambmanbn=(ab)(mnD.abmnambn=(ab)(mn5、下列因式分解正确的是(     A. B.C. D.6、下列因式分解错误的是(       A.3x-3y=3(xy) B.x2-4=(x+2)(x-2)C.x2+6x-9=(x+9)2 D.-x2x+2=-(x-1)(x+2)7、下列各式能用完全平方公式进行分解因式的是(       A.x2+1 B.x2+2x﹣1 C.x2+3x+9 D.8、已知a+b=2,a-b=3,则等于(       A.5 B.6 C.1 D.9、对于有理数abc,有(a+100b=(a+100c,下列说法正确的是(  )A.a≠﹣100,则bc0 B.a≠﹣100,则bc1C.bc,则a+bc D.a=﹣100,则abc10、计算的值是(  )A. B. C. D.2第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、因式分解:_______.2、因式分解:_______.3、因式分解:2a2﹣4ab+2b2=_____.4、因式分解:xy2﹣4x=_____;因式分解(ab2+4ab=_____.5、分解因式:﹣8a3b+8a2b2﹣2ab3=_____.三、解答题(5小题,每小题10分,共计50分)1、在因式分解的学习中我们知道对二次三项式可用十字相乘法方法得出,用上述方法将下列各式因式分解:(1)__________.(2)__________.(3)__________.(4)__________.2、因式分解:(1)3a2﹣27;(2)m3﹣2m2+m3、分解因式:(1)(2)(3)计算:(4)4、分解因式:(1)(2)5、分解因式(1)             (2) -参考答案-一、单选题1、D【解析】【分析】各项分解得到结果,即可作出判断.【详解】解:A、,不符合题意;B、,不符合题意;C、,不符合题意;D、因式分解正确,符合题意,故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.2、B【解析】【分析】根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可.【详解】解:A、,不是整式积的形式,不是因式分解,不符而合题意;B、,是因式分解,符合题意;C、,不是乘积的形式,不是因式分解,不符合题意;D、,不是乘积的形式,不是因式分解,不符合题意;故选B.【点睛】本题主要考查了因式分解的定义,熟知定义是解题的关键.3、D【解析】【分析】利用公式即可得答案.【详解】解:故选:D.【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握公式4、D【解析】【分析】由面积的和差关系以及S长方形ABCD=(a+b)(m+n)求解即可【详解】解:如图S长方形ABCD=(a+b)(m+n),AS长方形ABCDS长方形ABFH+S长方形HFCDam+n+bm+n)=(a+b)(m+n),不符合题意;BS长方形ABCDS长方形AEGD+S长方形BCGEma+b+na+b)=(a+b)(m+n),不符合题意;CS长方形ABCDS长方形AEQH+S长方形HQGD+S长方形EBFQ+S长方形QFCGam+bm+an+bn=(a+b)(m+n),不符合题意;D.不能得到ab+mn+am+bn=(a+b)(m+n),故D符合题意;故选:D【点睛】本题考查了因式分解,整式乘法与图形的面积,数形结合是解题的关键.5、C【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义和方法即可求解.【详解】解:A、,错误,故该选项不符合题意;B、,错误,故该选项不符合题意;C、,正确,故该选项符合题意;D、,不能进行因式分解,故该选项不符合题意;故选:C.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.6、C【解析】【分析】提取公因式判断A,根据平方差公式和完全平方公式分解因式判断BCD即可.【详解】解:显然对于ABD正确,不乖合题意,对于C:右边≠左边,故C错误,符合题意;故选:C.【点睛】本题考查了因式分解,熟练掌因式分解的方法是解题的关键.7、D【解析】【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项分析判断后利用排除法求解.【详解】解:Ax2+1不符合完全平方公式法分解因式的式子特点,故本选项不符合题意;Bx2+2x﹣1不符合完全平方公式法分解因式的式子特点,故本选项不符合题意;Cx2+3x+9不符合完全平方公式法分解因式的式子特点,故本选项不符合题意;D,故选项正确;故选:D【点睛】本题考查了完全平方式的运用分解因式,关键是熟练掌握完全平方式的特点.8、B【解析】【分析】根据平方差公式因式分解即可求解【详解】a+b=2,a-b=3,故选B【点睛】本题考查了根据平方差公式因式分解,掌握平方差公式是解题的关键.9、A【解析】【分析】将等式移项,然后提取公因式化简,根据乘法等式的性质,求解即可得.【详解】解:即:A选项中,若,则正确;其他三个选项均不能得出,故选:A.【点睛】题目主要考查利用因式分解化简等式,熟练掌握因式分解的方法是解题关键.10、B【解析】【分析】直接找出公因式进而提取公因式,进行分解因式即可.【详解】解:故选:B【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.二、填空题1、【解析】【分析】先提出公因式,再利用平方差公式进行分解,即可求解.【详解】解:故答案为:【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法,并灵活选用合适的方法解答是解题的关键.2、【解析】【分析】利用十字相乘法分解因式即可得.【详解】解:因为,且的一次项的系数,所以故答案为:【点睛】本题考查了因式分解,熟练掌握十字相乘法是解题关键.3、【解析】【分析】先提取公因式2,再利用完全平方公式计算可得.【详解】解:原式=故答案为:【点睛】本题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.4、     xy+2)(y-2)##x(y-2)(y+2)     (b+a)2##(a+b)2【解析】【分析】原式提公因式x,再利用平方差公式分解即可;原式整理后,利用完全平方公式分解即可.【详解】解:xy2-4x=xy2-4)=xy+2)(y-2);a-b2+4ab=a2-2ab+b2+4ab=a2+2ab+b2=(a+b2故答案为:xy+2)(y-2);(a+b2【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式时一定要分解彻底.5、﹣2ab(2ab2【解析】【分析】先提取公因式-2ab,再对余下的多项式利用完全平方公式继续分解.【详解】解:原式=﹣2ab(4a2﹣4ab+b2=﹣2ab(2ab2故答案为:﹣2ab(2ab2【点睛】本题考查提公因式法,公式法分解因式,解题的关键在于提取公因式后要继续进行二次分解因式.三、解答题1、 (1)(x-y)(x+6y)(2)(x-3a)(x-a-2)(3)(x+a-3b)(x-a-2b)(4)(20182x2+1)(x-1)【解析】【分析】(1)将-6y2改写成-y·6,然后根据例题分解即可;(2)将3a2+6a改写成,然后根据例题分解即可;(3)先化简,将改写,然后根据例题分解即可;(4)将改写成(2018-1)(2018+1),变形后根据例题分解即可;(1)解:原式==(x-y)(x+6y);(2)解:原式==(x-3a)(x-a-2);(3)解:原式====(x+a-3b)(x-a-2b);(4)解:原式====(20182x+1)(x-1) .【点睛】本题考查了十字相乘法因式分解,熟练掌握二次三项式可用十字相乘法方法得出是解答本题的关键.2、 (1)3(a+3)(a-3)(2)mm-1)2【解析】【分析】(1)先提公因式3,再利用平方差公式分解因式即可;(2)先提公因式m,再利用完全平方公式分解因式即可.【小题1】解:原式=3(a2-9)=3(a+3)(a-3);【小题2】原式=mm2-2m+1)=mm-1)2【点睛】此题主要考查了公式法以及提取公因式法分解因式,正确运用公式法分解因式是解题关键.3、(1);(2);(3)85;(4)【解析】【分析】(1)综合利用提公因式法和公式法进行因式分解即可得;(2)利用分组分解法进行因式分解即可得;(3)先利用公式法分解,从而可得的值,再代入计算即可得;(4)先利用十字相乘法分解,再利用提公因式法进行因式分解即可得.【详解】解:(1)原式(2)原式(3)(4)原式【点睛】本题考查了因式分解和因式分解的应用,熟练掌握并灵活运用因式分解的各方法是解题关键.4、(1);(2)【解析】【分析】(1)先提取公因式,然后再根据平方差公式进行因式分解即可;(2)先利用完全平方公式展开,然后合并同类项,进而再因式分解即可.【详解】解:(1)原式=(2)原式=【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.5、(1);(2)【解析】【分析】(1)先提公因式,然后利用平方差公式因式分解即可;(2)利用提公因式法分解因式即可.【详解】(1)解:原式(2)解:原式【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等. 

    相关试卷

    冀教版七年级下册第十一章 因式分解综合与测试一课一练:

    这是一份冀教版七年级下册第十一章 因式分解综合与测试一课一练,共20页。试卷主要包含了若a2=b+2,b2=a+2,,下列因式分解正确的是,已知x2+x﹣6=等内容,欢迎下载使用。

    冀教版七年级下册第十一章 因式分解综合与测试同步练习题:

    这是一份冀教版七年级下册第十一章 因式分解综合与测试同步练习题,共17页。试卷主要包含了下列因式分解正确的是,因式分解,多项式分解因式的结果是等内容,欢迎下载使用。

    2021学年第十一章 因式分解综合与测试课时训练:

    这是一份2021学年第十一章 因式分解综合与测试课时训练,共18页。试卷主要包含了如图,长与宽分别为a,下列运算错误的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map