终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    难点详解冀教版七年级下册第六章二元一次方程组定向攻克试题(无超纲)

    立即下载
    加入资料篮
    难点详解冀教版七年级下册第六章二元一次方程组定向攻克试题(无超纲)第1页
    难点详解冀教版七年级下册第六章二元一次方程组定向攻克试题(无超纲)第2页
    难点详解冀教版七年级下册第六章二元一次方程组定向攻克试题(无超纲)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版七年级下册第六章 二元一次方程组综合与测试精练

    展开

    这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试精练,共20页。试卷主要包含了有铅笔,已知关于x,《九章算术》中记载等内容,欢迎下载使用。
    冀教版七年级下册第六章二元一次方程组定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  0分)一、单选题(10小题,每小题0分,共计0分)1、已知是方程的解,则k的值为(  )A.﹣2 B.2 C.4 D.﹣42、《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元.若设共有人,该物品价值元,则根据题意可列方程组为(       A. B. C. D.3、《孙子算经》记载:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”大致意思是:今有若干人乘车,若每3人共乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9人无车可乘.问共有多少人?有多少辆车?若设有x人,有y辆车,根据题意,所列方程组正确的是(       A. B. C. D.4、中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘.问有多少人,多少辆车?设共有人,辆车,可列方程组为(       A. B. C. D.5、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需(       A.1.2元 B.1.05元 C.0.95元 D.0.9元6、已知关于xy的方程组的解满足2xy=2k,则k的值为(       A.k B.k C.k D.k7、《九章算术》中记载:“今有共买牛,人出六,不足四十;人出八,余四;问人数、牛价各几何?”其大意是:今有人合伙买牛,若每人出6钱,还差40钱;若每人出8钱,多余4钱,问合伙人数、牛价各是多少?设合伙人数为人,牛价为 钱,根据题意,可列方程组为(  )A.  B.  C.  D. 8、下列方程组中,属于二元一次方程组的是(  )A. B.C. D.9、若关于xy的方程是二元一次方程,则m的值为(       A.﹣1 B.0 C.1 D.210、已知二元一次方程组       A.6 B.4 C.3 D.2第Ⅱ卷(非选择题  100分)二、填空题(5小题,每小题4分,共计20分)1、为隆重庆祝建党一百周年,某学校欲购买三种花卉各100束装饰庆典会场.已知购买4束花卉,7束花卉,1束花卉,共用45元;购买3束花卉,5束花卉,1束花卉,共用35元.则学校购买这批装饰庆典会场的花卉一共要用__元.2、根据条件“比x的一半大3的数等于y的2倍”中的数量关系列出方程为 _____.3、若关于xy的二元一次方程组无解,则______.4、某食品店推出两款袋装营养早餐配料,甲种每袋装有10克花生,10克芝麻,10克核桃;乙种每袋装有20克花生,5克芝麻,5克核桃.甲、乙两款袋装营养早餐配料每袋成本价分别为袋中花生、芝麻、核桃的成本价之和.已知花生每克成本价0.02元,甲款营养早餐配料的售价为2.6元,利润率为30%,乙款营养早餐配料每袋利润率为20%.若这两款袋装营养早餐配料的销售利润率达到24%,则该公司销售甲、乙两款袋装营养早餐配料的数量之比是______.5、北京冬奥会志愿者招募迎来全球申请热潮,赛会志愿者将在北京赛区、延庆赛区、张家口赛区的竞赛场馆开展志愿服务,北京赛区、延庆赛区、张家口赛区的志愿者人数之比为5∶3∶2.随着赛事的调整,各赛区的志愿者人数均要增加,其中等于其余两个赛区增加的总人数的,则增加后北京赛区志愿者人数占所有赛区增加后的总人数的.为使延庆赛区、张家口赛区增加后的志愿者人数之比为6∶5,则延庆赛区增加的志愿者人数与各赛区增加的志愿者总人数之比是______.三、解答题(5小题,每小题10分,共计50分)1、解方程组:(1)(2)2、某工厂计划生产甲、乙两种产品,已知生产每件甲产品需要4吨A种原料和2吨B种原料,生产每件乙产品需要3吨A种原料和1吨B种原料.该厂现有A种原料120吨,B种原料50吨.(1)甲、乙两种产品各生产多少件,恰好使两种原料全部用完?(2)在(1)的条件下,计划每件甲产品的售价为3万元,每件乙产品的售价为5万元,可全部售出.根据市场变化情况,每件甲产品实际售价比计划上涨a%,每件乙产品实际售价比计划下降10%,结果全部出售的总销售额比原计划增加了3.5万元,求a的值.3、例1.知识点一   解三元一次方程组解方程组:4、春节临近,坚果和炒货都进入销售旺季,某批发商去年12月售出一批开心果和夏威夷果,其中开心果的售价为60元/千克,夏威夷果的售价为50元/千克,开心果的销量比夏威夷果的销量多500千克,总销售额为85000元.(1)该批发商去年12月开心果和夏威夷果的销量分别为多少千克?(2)由于供不应求,该批发商开始调整价格,今年1月开心果销售价格在去年12月基础上增长了2a%,销量减少了100千克;今年1月夏威夷果销售价格在去年12月基础上增加了元,销量下降了10%,最终今年每月总销售额比去年12月总销售额多了5900元,求a的值.5、解方程组:(1)(2) -参考答案-一、单选题1、C【解析】【分析】代入是方程kx+2y=﹣2得到关于k的方程求解即可.【详解】解:把代入方程得:﹣2k+6=﹣2,解得:k=4,故选C.【点睛】本题主要考查二元一次方程的解,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.有解必代是解决此类题目的基本思路.2、A【解析】【分析】根据题意可得等量关系:人数×8−3=物品价值;人数×7+4=物品价值,根据等量关系列出方程组即可.【详解】解:设有x人,物品价值y元,由题意得:故选:A【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.3、B【解析】【分析】根据“每3人乘一车,最终剩余2辆空车;若每2人同乘一车,最终剩下9人因无车可乘而步行”,即可得出关于x,y的二元一次方程组,此题得解.【详解】依题意,得:故选:B【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.4、C【解析】【分析】根据题意,找到关于xy的两组等式关系,即可列出对应的二元一次方程组.【详解】解:由每三人共乘一车,最终剩余2辆车可得:由每2人共乘一车,最终剩余9个人无车可乘可得:该二元一次方程组为:故选:C.【点睛】本题主要是考查了列二元一次方程组,熟练根据题意找到等式关系,这是求解该题的关键.5、B【解析】【分析】设一支铅笔、一本练习本和一支圆珠笔的单价分别为xyz元,根据“购铅笔3支,练习本7本,圆珠笔1支共需3.15元;购铅笔4支,练习本8本,圆珠笔2支共需4.2元”建立三元一次方程组,然后将两个方程联立,即可求得的值.【详解】设一支铅笔、一本练习本和一支圆珠笔的单价分别为xyz元,根据题意得:②–①可得:故选:B.【点睛】本题考查三元一次方程组的实际应用,解题关键是根据两个等量关系列出方程组,而利用整体思想,把所给两个等式整理为只含的等式.6、A【解析】【分析】根据得出,然后代入中即可求解.【详解】解:①+②得③,①﹣③得:②﹣③得:解得:故选:A.【点睛】本题考查了解三元一次方程组,根据题意得出的代数式是解题的关键.7、B【解析】【分析】设合伙人数为人,牛价为 钱,根据“若每人出6钱,还差40钱;若每人出8钱,多余4钱,”列出方程组,即可求解.【详解】解:设合伙人数为人,牛价为 钱,根据题意得:故选:B【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.8、C【解析】【分析】根据二元一次方程组的基本形式及特点进行判断,即①含有两个二元一次方程,②方程都为整式方程,③未知数的最高次数都为一次.【详解】解:A、该方程组中的第二个方程的最高次数为2,不是二元一次方程组,故本选项不符合题意;B、该方程组的第一个方程不是整式方程,不是二元一次方程组,故本选项不符合题意;C、该方程组符合二元一次方程组的定义,故本选项符合题意;D、该方程组中含有3个未知数,不是二元一次方程组,故本选项不符合题意;故选:C【点睛】本题主要考查二元一次方程组的判定,解题的关键是熟练掌握二元一次方程组的基本形式及特点.9、C【解析】【分析】根据二元一次方程的定义得出,再求出答案即可.【详解】解:∵关于xy的方程是二元一次方程,解得:m=1,故选C【点睛】本题考查了二元一次方程的定义,能熟记二元一次方程的定义是解此题的关键.10、D【解析】【分析】先把方程的②×5得到,然后用③-①即可得到答案【详解】解:把②×5得:③,用③ -①得:故选D.【点睛】本题主要考查了二元一次方程组和代数式求值,解题的关键在于能够观察出所求式子与二元一次方程组之间的关系.二、填空题1、1500【解析】【分析】列出两个三元一次方程,求出购买ABC三种花卉各1支的总价格,从而求出购买ABC三种花卉各100束的总价.【详解】解:设A种花朵束,种花朵束,种花朵束,则②,得,③,,得,④,④,得,(元故答案为:1500.【点睛】本题主要考查了三元一次方程组的实际应用,难点在于无法求出每一个未知数的数值,因而求出购买ABC三种花卉各1支的总价格是解决问题的关键,体现了数学的整体思想、化归思想,考查了学生的推理能力、计算能力、应用意识等.2、x+32y【解析】【分析】根据题中x的一半大3的数表示为:y的2倍表示为:,列出方程即可得.【详解】解:x的一半大3的数表示为:y的2倍表示为:综合可得:故答案为:【点睛】题目主要考查二元一次方程的应用,理解题意,列出方程是解题关键3、−【解析】【分析】根据加减消元法消去y,得到x,因为方程组无解,所以令分母等于0,使这个解无意义,则原方程组无解.【详解】解:①×2得:2mx+6y=18③,②×3得:3x−6y=3④,③+④得:(2m+3)x=21,x∵方程组无解,∴2m+3=0,m=−故答案为:−【点睛】本题考查了二元一次方程组的解,解题的关键是利用消元法求得x的值.4、13:30【解析】【分析】设1克芝麻成本价m元,1克核桃成本价n元,根据“花生每克成本价0.02元,甲款营养早餐配料的售价为2.6元,利润率为30%”列出方程得到m+n=0.18,进而算出甲乙两款袋装营养早餐的成本价,再根据“甲每袋袋装营养早餐的售价为2.6元,利润率为30%,乙种袋装营养早餐每袋利润率为20%.若公司销售这种混合装的袋装营养早餐总利润率为24%”列出方程即可得到甲、乙两种袋装营养早餐的数量之比.【详解】解:设1克芝麻成本价m元,1克核桃成本价n元,根据题意得:(10×0.02+10m+10n)×(1+30%)=2.6,解得m+n=0.18,则甲种干果的成本价为10×0.02+10m+10n=2(元),乙种干果的成本价为20×0.02+5m+5n=0.4+5×0.18=1.3(元),设甲种干果x袋,乙种干果y袋,根据题意得:2x×30%+1.3y×20%=(2x+1.3y)×24%,解得,,即甲、乙两种袋装袋装营养早餐的数量之比是13:30.故答案为:13:30.【点睛】本题考查二元一次方程的应用,解题的关键是找出等量关系列出方程.5、【解析】【分析】根据题意可设北京赛区、延庆赛区、张家口赛区的志愿者原有人数分别为 ,延庆赛区增加的志愿者人数为 ,张家口赛区增加的志愿者人数为,则北京赛区志愿者增加的人数为 ,根据延庆赛区、张家口赛区增加后的志愿者人数之比为6∶5,可得 ,再由增加后北京赛区志愿者人数占所有赛区增加后的总人数的.可得 ,从而得到 ,即可求解.【详解】解:根据题意可设北京赛区、延庆赛区、张家口赛区的志愿者原有人数分别为 ,延庆赛区增加的志愿者人数为 ,张家口赛区增加的志愿者人数为,则北京赛区志愿者增加的人数为∵延庆赛区、张家口赛区增加后的志愿者人数之比为6∶5, ,解得:∵增加后北京赛区志愿者人数占所有赛区增加后的总人数的 整理得:,解得:即延庆赛区增加的志愿者人数与各赛区增加的志愿者总人数之比为故答案为:【点睛】本题主要考查了列代数式,三元一次方程的应用,明确题意,准确得到等量关系是解题的关键.三、解答题1、(1);(2)【解析】【分析】(1)利用加减法求解;(2)先将方程整理,再利用加减法求出方程组的解.【详解】解:(1)①×5+②,14x=-14,解得x=-1,x=-1代入①,-2+y=-5,解得y=-3,∴原方程组的解是(2)方程组整理得由①+②得:6x=18,x=3,x=3代入①得:所以方程组的解为【点睛】此题考查了解二元一次方程组,正确掌握解二元一次方程组的解法:代入消元法及加减消元法是解题的关键.2、 (1)甲生产15件,乙生产20件,恰好使两种原材料全部用完(2)【解析】【分析】(1)设甲生产x件,乙生产y件,根据题意得,,进行计算即可得;(2)用市场变化后的总销售额减去原计划的总销售额即可得.(1)解:设甲生产x件,乙生产y件,根据题意得,由②得,将③代入①得: 代入③得:解得则甲生产15件,乙生产20件,恰好使两种原材料全部用完.(2)解:根据题意得,【点睛】本题考查了二元一次方程的应用,一元一次方程的应用,解题的关键是理解题意,找出等量关系.3、【解析】【分析】通过消元,把三元一次方程组转化为二元一次方程组,最后转化为一元一次方程求解即可.【详解】①+②得:2x+3y=18,④②+③得:4x+y=16,⑤由④和⑤组成一个二元一次方程组: 解得:x=3,y=4代入①得:3+4+z=12,解得:z=5,所以原方程组的解为:【点睛】本题考查解三元一次方程组,解题的关键是“消元”思想的运用.4、 (1)该批发商去年12月开心果和夏威夷果的销量分别为1000千克,500千克;(2)a=10.【解析】【分析】(1)设该批发商去年12月开心果的销量为x千克,夏威夷果的销量分别为y千克,根据等量关系开心果的销量比夏威夷果的销量多500千克,总销售额为85000元.列方程组,解方程组即可;(2)根据开心果涨价后销售价格×减少后销量+夏威夷果涨价后的销售价格×降低10%后的销量=12月份销售额+5900,列方程,然后解方程即可.(1)解:设该批发商去年12月开心果的销量为x千克,夏威夷果的销量分别为y千克根据题意,得解得答该批发商去年12月开心果和夏威夷果的销量分别为1000千克,500千克;(2)解:整理得76500+1440a=90900,解得:a=10,经检验a=10是原方程的根,并符合题意.【点睛】本题考查列二元一次方程组解应用题,一元一次方程解销售问题应用题,掌握列二元一次方程组解应用题,一元一次方程解销售问题应用题的方法与步骤是解题关键.5、 (1)(2)【解析】【分析】(1) 利用加减消元法求出解即可;(2) 方程组整理后,利用加减消元法求出解即可.(1)解:,①+②得,3x=9,即x=3,x=3代入①得,y=2,则方程组的解为(2)解:方程组整理得:①×2+②得,y=5,y=5代入①得,x=4,则方程组的解为【点睛】本题考查二元一次方程组的解法.关键是熟练掌握代入消元法和加减消元法的应用. 

    相关试卷

    2020-2021学年第二十章 函数综合与测试同步测试题:

    这是一份2020-2021学年第二十章 函数综合与测试同步测试题,共21页。试卷主要包含了函数中,自变量x的取值范围是,函数y=的自变量x的取值范围是,如图所示的图象等内容,欢迎下载使用。

    冀教版八年级下册第二十章 函数综合与测试课时作业:

    这是一份冀教版八年级下册第二十章 函数综合与测试课时作业,共22页。

    初中数学第二十二章 四边形综合与测试精品同步训练题:

    这是一份初中数学第二十二章 四边形综合与测试精品同步训练题,共25页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map