数学七年级下册第六章 二元一次方程组综合与测试巩固练习
展开
这是一份数学七年级下册第六章 二元一次方程组综合与测试巩固练习,共19页。试卷主要包含了有下列方程组,有下列方程等内容,欢迎下载使用。
冀教版七年级下册第六章二元一次方程组专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘.问有多少人,多少辆车?设共有人,辆车,可列方程组为( )A. B. C. D.2、若关于x,y的二元一次方程组的解,也是二元一次方程x+2y=﹣1的解,则a的值为( )A.2 B.1 C. D.03、《九章算术》是中国古代的一本重要数学著作,其中有一道方程的应用题:“五只雀、六只燕,共重16两,雀重燕轻.互换其中一只,恰好一样重.问每只雀、燕的重量各为多少?”解:设雀每只x两,燕每只y两,则可列出方程组为( )A. B.C. D.4、某宾馆准备正好用200元购买价格分别为50元和25元的两种换气扇(两种都要买),则可供宾馆选择的方案有( )A.3种 B.4种 C.5种 D.6种5、现有一批脐橙运往外地销售,A型车载满一次可运3吨,B型车载满一次可运4吨,现有脐橙31吨,计划同时租用A,B两种车型,一次运完且恰好每辆车都载满脐橙,租车方案共有( )A.2种 B.3种 C.4种 D.5种6、李老师为学习进步的学生购买奖品,共用去42元购买单价为6元的和单价为12元的两种笔记本(购买本数均为正整数).你认为购买方案共有( )种.A.2 B.3 C.4 D.57、有下列方程组:①;②;③;④ ;⑤,其中二元一次方程组有( )A.1个 B.2个 C.3个 D.4个8、根据大马和小马的对话求大马和小马各驮了几包货物.大马说:“把我驮的东西给你1包多好哇!这样咱俩驮的包数就一样多了.”小马说:“我还想给你1包呢!”大马说:“那可不行!如果你给我1包,我驮的包数就是你的2倍了.”小明将这个实际问题转化为二元一次方程组问题.设未知数x,y,已经列出一个方程x﹣1=y+1,则另一个方程应是( )A.x+1=2y B.x+1=2(y﹣1)C.x﹣1=2(y﹣1) D.y=1﹣2x9、有下列方程:①xy=1;②2x=3y;③;④x2+y=3; ⑤;⑥ax2+2x+3y=0 (a=0),其中,二元一次方程有( )A.1个 B.2个 C.3个 D.4个10、已知关于x,y的二元一次方程组的解是,则a+b的值是( )A.1 B.2 C.﹣1 D.0第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则可列方程组为___.2、若是二元一次方程的解,则______.3、一支部队第一天行军4小时,第二天行军5小时,两天共行军98km,且第一天比第二天少走2km,设第一天行军的平均速度为x km/h,第二天行军的平均速度为y km/h,可列方程组______.4、填空:端午节时,王老师用72元钱买了荷包和五彩绳共20个.其中荷包每个4元,五彩绳每个3元,在这个问题中的等量关系是:(1)荷包个数+五彩绳个数=______;(2)______=725、请写出一个二元一次方程组______,使它的解为.三、解答题(5小题,每小题10分,共计50分)1、对于任意一个四位数,若千位上的数字与百位上的数字之和是十位上的数字与个位上的数字之和的2倍,则称是“2倍和数”.如,因为,所以3504是“2倍和数”;,因为,所以6824不是“2倍和数”.(1)判断6423,4816是否为“2倍和数”?并说明理由;(2)对于“2倍和数”,当百位上的数字是个位上的数字的3倍,且各数位上的数字之和能被9整除时,记.求的最大值和最小值.2、下面是学习二元一次方程组时,老师提出的问题和两名同学所列的方程.问题:某个工人一天工作6个小时,可以生产零件一整箱和不足一箱的20个;由于特殊情况,今天他只工作4个小时,生产零件一整箱和不足一箱的4个,问这一箱零件和该工人每小时能生产的零件数分别是多少?小明所列方程: 小亮所列方程:根据以上信息,解答下列问题.(1)以上两个方程(组)中意义是否相同?______(填“是”或“否”);(2)小亮的方程所用等量关系______(填序号,“①每个小时生产的零件数”或“②4个小时生产的零件数相等”);(3)从以上两个方程(组)中任选一个求解,完整解答老师提出的问题.3、已知方程组的解、的值之和等于2,求的值.4、解方程组:5、解方程组:(1)(2) -参考答案-一、单选题1、C【解析】【分析】根据题意,找到关于x、y的两组等式关系,即可列出对应的二元一次方程组.【详解】解:由每三人共乘一车,最终剩余2辆车可得:.由每2人共乘一车,最终剩余9个人无车可乘可得:.该二元一次方程组为:.故选:C.【点睛】本题主要是考查了列二元一次方程组,熟练根据题意找到等式关系,这是求解该题的关键.2、D【解析】【分析】解方程组,用a表示x,y,把x,y代入x+2y=﹣1中得到关于a的方程,解方程即可.【详解】解:,①+②得2x=2a+6,x=a+3,把代入①,得a+3+y=-a+1,y=-2a-2,∵x+2y=﹣1∴a+3+2(-2a-2)=-1,∴a=0,故选D.【点睛】本题考查了解二元一次方程组以及二元一次方程的解,解方程组,用a表示x,y,把x,y代入x+2y=﹣1中得到关于a的方程是解题的关键.3、B【解析】【分析】根据题意列二元一次方程组即可.【详解】解:设雀每只x两,燕每只y两则五只雀为5x,六只燕为6y共重16两,则有互换其中一只则五只雀变为四只雀一只燕,即4x+y六只燕变为五只燕一只雀,即5y+x且一样重即由此可得方程组.故选:B.【点睛】列二元一次方程组解应用题的一般步骤审:审题,明确各数量之间的关系;设:设未知数(一般求什么,就设什么);找:找出应用题中的相等关系;列:根据相等关系列出两个方程,组成方程组;解:解方程组,求出未知数的值;答:检验方程组的解是否符合题意,写出答案.4、A【解析】【分析】设购买50元和25元的两种换气扇的数量分别为x,y,然后根据用200元购买价格分别为50元和25元的两种换气扇,列出方程求解即可.【详解】解:设购买50元和25元的两种换气扇的数量分别为x,y由题意得:,即,∵x、y都是正整数,∴当x=1时,y=6,当x=2时,y=4,当x=3时,y=2,∴一共有3种方案,故选A.【点睛】本题主要考查了二元一次方程的应用,解题的关键在于能够准确理解题意,列出方程求解.5、B【解析】【分析】设租A型车x辆,租B型车y辆,根据题意列方程得,正整数解即可.【详解】解:设租A型车x辆,租B型车y辆,根据题意列方程得,∴,∵均为正整数,∴是4的倍数,小于31的4的倍数有28,24,20,16,12,8,4,∴=28,解得x=1,,∴=24,解得,,∴=20,解得,∴=16,解得x=5,,∴=12,解得,∴=8,解得,∴=4,解得x=9,,∴租车方案有三种分别为:租A型车1辆,租B型车7辆或租A型车5辆,租B型车4辆或租A型车9辆,租B型车1辆.故选择B.【点睛】本题考查二元一次方程的正整数解,掌握应用二元一次方程解应用题,利用二元一次方程的正整数解解决方案设计问题是解题关键.6、B【解析】【分析】设购买笔记本本,购买笔记本本,先建立二元一次方程,再根据均为正整数进行分析即可得.【详解】解:设购买笔记本本,购买笔记本本,由题意得:,即,因为均为正整数,所以有以下三种购买方案:①当,时,,②当,时,,③当,时,,故选:B.【点睛】本题考查了二元一次方程的应用,正确建立方程是解题关键.7、B【解析】略8、B【解析】【分析】设大马驮x袋,小马驮y袋.本题中的等量关系是:2×(小马驮的﹣1袋)=大马驮的+1袋;大马驮的﹣1袋=小马驮的+1袋,据此可列方程组求解.【详解】解:设大马驮x袋,小马驮y袋.根据题意,得.故选:B.【点睛】此题考查了二元一次方程组应用题,解题的关键是正确分析题目中的等量关系.9、C【解析】略10、B【解析】【分析】将代入即可求出a与b的值;【详解】解:将代入得: ,∴a+b=2;故选:B.【点睛】本题考查二元一次方程组的解;熟练掌握方程组与方程组的解之间的关系是解题的关键.二、填空题1、【解析】【分析】根据题意可得等量关系:绳索长=竿长+5尺,竿长=绳索长的一半+5尺,根据等量关系可得方程组.【详解】解:设绳索长尺,竿长尺,由题意得:,故答案为:.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,设出未知数列出方程.2、-1【解析】【分析】把代入即可求出a的值.【详解】把代入方程得:,解得:,故答案为:【点睛】本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.3、【解析】【分析】相等关系有两个:两天行军的路程之和为98km,第一天行军的路程加上2km等于第二天的行军路程,再列方程组即可.【详解】解:设第一天行军的平均速度为x km/h,第二天行军的平均速度为y km/h,则故答案为:【点睛】本题考查的是二元一次方程组的应用,“确定相等关系列方程组”是解本题的关键.4、 20 荷包钱数+五彩绳钱数【解析】【分析】(1)根据题意即得出荷包个数+五彩绳个数就是王老师买荷包和五彩绳的总个数,即得出答案;(2)根据王老师用了72元钱买荷包和五彩绳,即可直接填空.【详解】(1)根据题意可知荷包个数+五彩绳个数就是王老师买荷包和五彩绳的总个数,即为20个.故答案为:20.(2)根据题意王老师用了72元钱买荷包和五彩绳,所以荷包钱数+五彩绳钱数=72.故答案为:荷包钱数+五彩绳钱数.【点睛】本题考查一元一次方程的实际应用.找准等量关系是解答本题的关键.5、(答案不唯一)【解析】【分析】根据二元一次方程组的解找到x与y的数量关系,然后列出方程组即可.【详解】解:∵二元一次方程组的解为,∴这个方程组可以是,故答案为:(答案不唯一),【点睛】本题考查的是二元一次方程组解的定义,解答此题的关键是把方程的解代入各组方程中,看各方程是否成立.三、解答题1、 (1)6423是“2倍和数”, 4816不是“2倍和数”,理由见解析;(2)最大值是3117,最小值是1107.【解析】【分析】(1)根据定义进行判断即可(2)设的个位上的数字为,十位上的数字为,则百位上的数字为,千位上的数字为,进而求得的各数位上的数字之和,根据,可得能被3整除,进而求二元一次方程的整数解即可,进而列出,即可求得的最大值和最小值.(1),∴6423是“2倍和数”,,∴4816不是“2倍和数”;(2)设的个位上的数字为,十位上的数字为,则百位上的数字为,千位上的数字为,,,,,为整数),的各数位上的数字之和为,各数位上的数字之和能被9整除,能被3整除,或,,,,的最大值是3117,最小值是1107.【点睛】本题考查了新定义,求二元一次方程的整数解,整除,理解新定义是解题的关键.2、 (1)是(2)②(3)这一箱零件和该工人每小时能生产的零件数分别是28个、8个.【解析】【分析】(1)根据所列方程分别得到小明和小亮所列方程中x的意义即可得到答案;(2)根据小亮所列方程的意义求解即可;(3)利用解一元一次方程和解二元一次方程组的方法求解即可.(1)解:由小明所列方程的意义可知,小明方程中x表示的是这一箱零件的个数,而由小亮所列方程的意义可知,小亮方程中的x表示的是这一箱零件的个数,∴以上两个方程(组)中x意义相同,故答案为:是;(2)解:根据小亮所列方程的意义可知小亮的方程所用等量关系4个小时生产的零件数相等,故答案为:②;(3)解:,把①-②得:,解得,把代入①得:,解得;去分母得:,去括号:,移项得:,合并得:,系数化为1得:,∴,∴这一箱零件和该工人每小时能生产的零件数分别是28个、8个.【点睛】本题主要考查了一元一次方程和二元一次方程组的应用,正确理解所列方程的意义是解题的关键.3、k=4【解析】【分析】由原方程组中两个方程相减可得 与结合成新的方程组,求解的值,再求解即可.【详解】解: 方程组,①②得:③,又由题意得:④,由③和④组成新的方程组,解得:,.【点睛】本题考查的是解二元一次方程组,结合已知条件熟练的构建新的二元一次方程组是解本题的关键.4、【解析】【分析】根据加减消元法解二元一次方程组即可【详解】解:①-②得:解得将代入①解得原方程组的解为:【点睛】本题考查了加减消元法解二元一次方程组,掌握加减消元法是解题的关键.5、(1);(2)【解析】【分析】(1)利用加减法求解;(2)先将方程整理,再利用加减法求出方程组的解.【详解】解:(1),①×5+②,14x=-14,解得x=-1,把x=-1代入①,-2+y=-5,解得y=-3,∴原方程组的解是; (2)方程组整理得由①+②得:6x=18,∴x=3,把x=3代入①得:, 所以方程组的解为.【点睛】此题考查了解二元一次方程组,正确掌握解二元一次方程组的解法:代入消元法及加减消元法是解题的关键.
相关试卷
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试课堂检测,共17页。
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试同步练习题,共20页。试卷主要包含了已知,则,若是方程组的解,则的值为等内容,欢迎下载使用。
这是一份七年级下册第七章 相交线与平行线综合与测试同步练习题,共22页。试卷主要包含了直线等内容,欢迎下载使用。