2020-2021学年第六章 二元一次方程组综合与测试同步训练题
展开冀教版七年级下册第六章二元一次方程组专题训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元.若设共有人,该物品价值元,则根据题意可列方程组为( )
A. B. C. D.
2、在某场CBA比赛中,某位运动员的技术统计如下表所示:
技术 | 上场时间(分钟) | 出手投篮(次) | 投中(次) | 罚球得分(分) | 篮板(个) | 防攻(次) | 个人总得分(分) |
数据 | 38 | 27 | 11 | 6 | 3 | 4 | 33 |
注:①表中出手投篮次数和投中次数均不包括罚球;
②总得分=两分球得分+三分球得分+罚球得分.
根据以上信息,本场比赛中该运动员投中两分球和三分球各( )个.
A.5,6 B.6,5 C.4,7 D.7,4
3、已知x,y满足,则x-y的值为( )
A.3 B.-3 C.5 D.0
4、佳佳坐在匀速行驶的车上,将每隔一段时间看到的里程碑上的数描述如下:
时刻 | 12:00 | 13:00 | 14:00 |
里程碑上的数 | 是一个两位数,数字之和为7 | 十位数字和个位数字与12:00时看到的刚好相反 | 比12:00看到的两位数中间多了个0 |
则12:00时看到的两位数是( )A.16 B.25 C.34 D.52
5、为奖励期中考试中成绩优异的同学,七(二)班计划用50元购买笔记本和中性笔两种奖品,已知笔记本的价格为7元,中性笔的价格为2元,若两种奖品都买,则购买的方案有几种?( )
A.2 B.3 C.4 D.5
6、下列方程是二元一次方程的是( )
A.x﹣xy=1 B.x2﹣y﹣2x=1 C.3x﹣y=1 D.﹣2y=1
7、下列各方程中,是二元一次方程的是( )
A.=y+5x B.3x+1=2xy C.x=y2+1 D.x+y=1
8、《孙子算经》记载:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”大致意思是:今有若干人乘车,若每3人共乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9人无车可乘.问共有多少人?有多少辆车?若设有x人,有y辆车,根据题意,所列方程组正确的是( )
A. B. C. D.
9、已知是二元一次方程,则的值为( )
A. B.1 C. D.2
10、如果关于x和y的二元一次方程组的解中的x与y的值相等,则a的值为( )
A.-2 B.-1 C.2 D.1
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、已知等式(2A﹣7B)x+(3A﹣8B)=8x+10,对一切实数x都成立,则A+B=_____.
2、在二元一次方程3x+y=12的解中,x和y是相反数的解是_______.
3、为确保信息安全,信息需加密传输,发送方由明文密文(加密),接收方由密文明文(解密),已知加密规则为:明文,,,对应密文,,,.例如,明文1,2,3,4对应密文5,7,14,16.当接收方收到密文9,9,24,28时,则解密得到的明文为 __.
4、三元一次方程:含有___未知数,并且含有未知数的项的___都是____,这样的方程叫做三元一次方程.
5、解二元一次方程组有___________和___________.
三、解答题(5小题,每小题10分,共计50分)
1、下面是学习二元一次方程组时,老师提出的问题和两名同学所列的方程.
问题:某个工人一天工作6个小时,可以生产零件一整箱和不足一箱的20个;由于特殊情况,今天他只工作4个小时,生产零件一整箱和不足一箱的4个,问这一箱零件和该工人每小时能生产的零件数分别是多少?
小明所列方程: 小亮所列方程:
根据以上信息,解答下列问题.
(1)以上两个方程(组)中意义是否相同?______(填“是”或“否”);
(2)小亮的方程所用等量关系______(填序号,“①每个小时生产的零件数”或“②4个小时生产的零件数相等”);
(3)从以上两个方程(组)中任选一个求解,完整解答老师提出的问题.
2、若一个三位正整数(各个数位上的数字均不为0)满足,则称这个三位正整数为“长久数”.对于一个“长久数”m,将它的百位数字和个位数字交换以后得到新数n,记.如:满足,则216为“长久数”,那么,所以.
(1)求、的值;
(2)对于任意一个“长久数”m,若能被5整除,求所有满足条件的“长久数”.
3、风味美饭店生意火爆,座无虚席,老板决定扩大规模重新装修.若先请甲施工队单独做3天、再请乙施工队单独做24天,可完成施工,风味美饭店老板应付两队工钱共7200元.若先请甲施工队单独做9天、再请乙施工队单独做16天,可完成施工,风味美饭店老板应付两队工钱共7600元.
(1)甲、乙两施工队工作一天,风味美饭店老板应各付多少钱?
(2)若装修完后,风味美饭店马上投入使用,每天可盈利300元,现有三种方案:甲队单独做:②乙队单独做;③甲、乙两队同时做,你认为哪一种施工方案更有利于饭店老板?请你说明理由.
4、对于任意一个三位正整数,如果满足百位上的数字小于个位上的数字,且百位上的数字与个位上的数字之和等于十位上的数字,那么称这个数为“时空伴随数”,用“时空伴随数”的十位数字的平方减去个位数字的平方再减去百位数字的平方,得到的结果记为.例如:,满足,且,所以143是“时空伴随数”,则;例如:,满足,但是,所以395不是“时空伴随数”;再如:,满足,但是,所以352不是“时空伴随数”.
(1)判断264和175是不是“时空伴随数”?并说明理由;
(2)若是“时空伴随数”,且的3倍与的十位数字之和能被7整除,求满足条件的“时空伴随数”以及的最大值.
5、已知二元一次方程组,求的值.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据题意可得等量关系:人数×8−3=物品价值;人数×7+4=物品价值,根据等量关系列出方程组即可.
【详解】
解:设有x人,物品价值y元,由题意得:
故选:A.
【点睛】
此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.
2、B
【解析】
【分析】
设本场比赛中该运动员投中两分球x个,三分球y个,根据投中次数结合总分,即可得出关于x、y的二元一次方程组,解之即可得出结论.
【详解】
解:设本场比赛中该运动员投中两分球x个,三分球y个,
根据题意得:,
解得:.
答:设本场比赛中该运动员投中两分球6个,三分球5个.
故选:B.
【点睛】
本题考查统计表和了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.
3、A
【解析】
【分析】
用第二个方程减去第一个方程即可解答.
【详解】
解:∵
∴3x-4y-(2x-3y)=8-5
x-y=3.
故选A.
【点睛】
本题主要考查了解二元一次方程组以及求代数式的值,掌握整体法成为解答本题的关键.
4、A
【解析】
【分析】
设小明12:00看到的两位数,十位数为x,个位数为y,根据车的速度不变和12:00时看到的两位数字之和为7,即可列出二元一次方程组,解方程组即可求解.
【详解】
设小明12:00看到的两位数,十位数为x,个位数为y,
由题意列方程组得:,
解得:,
∴12:00时看到的两位数是16.
故选:A.
【点睛】
本题考查二元一次方程组的应用,掌握里程碑上的数的表示是解题的关键.
5、B
【解析】
【分析】
设可以购进笔记本x本,中性笔y支,利用总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出购买方案的个数.
【详解】
解:设可以购进笔记本x本,中性笔y支,
依题意得: ,
∴ ,
∵x,y均为正整数,
∴ 或 或 ,
∴共有3种购买方案,
故选:B.
【点睛】
本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.
6、C
【解析】
【分析】
根据二元一次方程的定义逐个判断即可.含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.
【详解】
解:A、x﹣xy=1含有两个未知数,但未知数的最高次数是2次,
∴x﹣xy=1不是二元一次方程;
B、x2﹣y﹣2x=1含有两个未知数.未知数的最高次数是2次,
∴x2﹣y﹣2x=1不是二元一次方程;
C、3x﹣y=1含有两个未知数,未知数的最大次数是1次,
∴3x﹣y=1是二元一次方程;
D、﹣2y=1含有两个未知数,但分母上含有未知数,不是整式方程,
∴﹣2y=1不是二元一次方程.
故选:C.
【点睛】
此题主要考查了二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.
7、D
【解析】
【分析】
根据二元一次方程的定义逐一排除即可.
【详解】
解:A、=y+5x不是二元一次方程,因为不是整式方程;
B、3x+1=2xy不是二元一次方程,因为未知数的最高项的次数为2;
C、x=y2+1不是二元一次方程,因为未知数的最高项的次数为2;
D、x+y=1是二元一次方程.
故选:D.
【点睛】
此题主要考查了二元一次方程定义关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.
8、B
【解析】
【分析】
根据“每3人乘一车,最终剩余2辆空车;若每2人同乘一车,最终剩下9人因无车可乘而步行”,即可得出关于x,y的二元一次方程组,此题得解.
【详解】
依题意,得:
故选:B
【点睛】
本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.
9、C
【解析】
【分析】
根据二元一次方程的定义,即含有两个未知数,且未知数的次数均为1,即可求解.
【详解】
解:∵是二元一次方程,
∴ ,且 ,
解得: .
故选:C
【点睛】
本题主要考查了二元一次方程的定义,解题的关键是熟练掌握含有两个未知数,且未知数的次数均为1.
10、C
【解析】
【分析】
先根据x=y,把原方程变成,然后求出x的值,代入求出a的值即可.
【详解】
解∵x=y,
∴原方程组可变形为,
解方程①得x=1,
将代入②得,
解得,
故选C.
【点睛】
本题主要考查了根据二元一次方程组的解集情况求参数,解题的关键在于能够根据题意把x=y代入到原方程中求出x的值.
二、填空题
1、##0.4
【解析】
【分析】
根据关键语“等式(2A﹣7B)x+(3A﹣8B)=8x+10对一切实数x都成立”,只要让等式两边x的系数和常数分别相等即可列出方程组求解.
【详解】
解:(2A﹣7B)x+(3A﹣8B)=8x+10,
∴,
解得:,
则A+B=,
故答案为:.
【点睛】
本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.
2、
【解析】
【分析】
根据x和y是相反数可得x=﹣y,然后代入原方程求解即可.
【详解】
解:∵x和y是相反数,
∴x=﹣y,
把x=﹣y代入原方程中,可得:﹣3y+y=12,
解得:y=﹣6,
∴x=6,
∴在二元一次方程3x+y=12的解中,x和y是相反数的解是,
故答案为:.
【点睛】
本题考查二元一次方程的解,理解方程的解和互为相反数的概念是解题关键.
3、5,2,5,7
【解析】
【分析】
设解密得到的明文为,,,,加密规则得出方程组,求出,,,的值即可.
【详解】
解:设明文为,,,,
由题意得:,
解得:,
则得到的明文为5,2,5,7.
故答案为:5,2,5,7.
【点睛】
本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.
4、 三个 次数 1
【解析】
【分析】
由题意直接利用三元一次方程的定义进行填空即可.
【详解】
解:含有三个未知数,并且含有未知数的项的次数都是1,这样的方程叫做三元一次方程.
故答案为:三个,次数,1.
【点睛】
本题考查三元一次方程的定义,注意掌握含有三个未知数,并且含有未知数的项的次数都是1,这样的方程叫做三元一次方程.
5、 代入消元法 加减消元法
【解析】
略
三、解答题
1、 (1)是
(2)②
(3)这一箱零件和该工人每小时能生产的零件数分别是28个、8个.
【解析】
【分析】
(1)根据所列方程分别得到小明和小亮所列方程中x的意义即可得到答案;
(2)根据小亮所列方程的意义求解即可;
(3)利用解一元一次方程和解二元一次方程组的方法求解即可.
(1)
解:由小明所列方程的意义可知,小明方程中x表示的是这一箱零件的个数,而由小亮所列方程的意义可知,小亮方程中的x表示的是这一箱零件的个数,
∴以上两个方程(组)中x意义相同,
故答案为:是;
(2)
解:根据小亮所列方程的意义可知小亮的方程所用等量关系4个小时生产的零件数相等,
故答案为:②;
(3)
解:,
把①-②得:,解得,
把代入①得:,解得;
去分母得:,
去括号:,
移项得:,
合并得:,
系数化为1得:,
∴,
∴这一箱零件和该工人每小时能生产的零件数分别是28个、8个.
【点睛】
本题主要考查了一元一次方程和二元一次方程组的应用,正确理解所列方程的意义是解题的关键.
2、 (1),
(2)
【解析】
【分析】
(1)根据定义求解即可;
(2)根据新定义写出,,根据整式的加减化简,进而根据,且能被5整除,得出,解二元一次方程即可求解,从而求得.
(1)
解:∵当时,,
∴
当时,
(2)
设,则,
能被5整除,
是5的倍数
,且是均不为0的正整数
的正整数解为:
又
所有满足条件的“长久数”
【点睛】
本题考查了二元一次方程组的应用,新定义,整除,理解题意是解题的关键.
3、 (1)甲施工队工作一天饭店应付400元,乙施工队工作一天饭店应付250元.
(2)安排甲、乙两个装修施工队同时施工更有利于饭店
【解析】
【分析】
(1)设甲施工队工作一天饭店应付x元,乙施工队工作一天饭店应付y元,根据“若先请甲施工队单独做3天、再请乙施工队单独做24天,可完成施工,风味美饭店老板应付两队工钱共7200元.若先请甲施工队单独做9天、再请乙施工队单独做16天,可完成施工,风味美饭店老板应付两队工钱共7600元”,即可得出关于x,y的二元一次方程施工队,解之即可得出结论;
(2)设甲施工队单独完成工程需要a天,乙施工队单独完成工程需要b天,根据题意列方程组求出两施工队单独完成工程的天数,根据总费用=每天需支付的费用×工作时间,可分别求出单独请甲施工队和单独请乙施工队施工所需费用,分单独请甲施工队施工、单独请乙施工队施工和请甲、乙两施工队合做施工三种情况考虑,分别求出三种情况下损失的钱数,比较后即可得出结论.
(1)
设甲施工队工作一天饭店应付x元,乙施工队工作一天饭店应付y元,
依题意,得:
,
解得:.
答:甲施工队工作一天饭店应付400元,乙施工队工作一天饭店应付250元.
(2)
设甲施工队单独完成工程需要a天,乙施工队单独完成工程需要b天,根据题意得,
解得,
经检验,
∴是方程组的解,
单独请甲施工队需要的费用为400×21=8400(元);
单独请乙施工队需要的费用为250×28=7000(元).
同做:(天)
合做需要的费用为(元)
甲乙合做比乙单独做早完工(28-12)=16(天)
16天饭店收益:16×300=4800(元)
7800-4800=3000(元),即相对于乙单独做甲乙合做只花3000元;
甲单独做比乙单独做早完工:28-21=7(天)
300×7=2100(元),
8400-2100=6300(元),即相对于乙单独做甲乙合做只花6300元;
∵3000<6300<7000,
∴甲、乙合做花费最少.
答:安排甲、乙两个装修施工队同时施工更有利于饭店
【点睛】
本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程施工队;(2)利用总费用=每天需支付的费用×工作时间,分别求出单独请甲施工队和单独请乙施工队施工所需费用;(3)利用损失的总钱数=施工费用+因装修损失收入,分别求出三种施工方式损失的总钱数.
4、 (1)264是“时空伴随数”,175不是“时空伴随数”,理由见解析
(2)36
【解析】
【分析】
(1)根据定义直接判断即可;
(2)根据定义设,进而根据整除的关系,列出二元一次方程,求其整数解即可求得,进而根据进行计算,并比较结果求得最大值.
(1)
264是“时空伴随数”,175不是“时空伴随数”,理由如下:
∵且,∴264是“时空伴随数”.
∵但是,∴175不是“时空伴随数”
(2)
∵是“时空伴随数”,
∴设,
(,,均为整数)
∴能被7整除
∴是7的倍数,
∵,,
∴,
∴
或或
,,
,
∵,
∴的最大值为36
【点睛】
本题考查了新定义,二元一次方程求整数解,理解题意是解题的关键.
5、4
【解析】
【分析】
将两式相加,直接得出x+y的值即可.
【详解】
解:,
(1)(2)得:,
.
【点睛】
本题考查了二元一次方程组的解法,解题的关键是把(x+y)看做一个整体,两式相加直接得到x+y的值.
初中冀教版第六章 二元一次方程组综合与测试课时作业: 这是一份初中冀教版第六章 二元一次方程组综合与测试课时作业,共18页。试卷主要包含了方程组 消去x得到的方程是等内容,欢迎下载使用。
初中数学冀教版七年级下册第六章 二元一次方程组综合与测试练习: 这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试练习,共19页。试卷主要包含了二元一次方程的解可以是,若方程组的解为,则方程组的解为等内容,欢迎下载使用。
数学七年级下册第六章 二元一次方程组综合与测试课后复习题: 这是一份数学七年级下册第六章 二元一次方程组综合与测试课后复习题,共19页。试卷主要包含了若是方程的解,则等于,已知a,b满足方程组则的值为,已知是方程的解,则k的值为等内容,欢迎下载使用。