冀教版七年级下册第六章 二元一次方程组综合与测试习题
展开冀教版七年级下册第六章二元一次方程组同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、在下列方程中,属于二元一次方程的是( )
A.x2+y=3 B.2x=y C.xy=2 D.2x+y=z﹣1
2、已知,则( )
A. B. C. D.
3、用代入消元法解关于、的方程组时,代入正确的是( )
A. B.
C. D.
4、某商场按定价销售某种商品时,每件可获利45元;按定价的8.5折销售该商品8件与将定价降低35元销售该商品12件所获利润相等.该商品的进价、定价分别是( )
A.95元,180元 B.155元,200元 C.100元,120元 D.150元,125元
5、已知x,y满足,则x-y的值为( )
A.3 B.-3 C.5 D.0
6、中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹价值x两,牛每头价值y两,根据题意可列方程组为( )
A. B. C. D.
7、中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘.问有多少人,多少辆车?设共有人,辆车,可列方程组为( )
A. B. C. D.
8、已知是二元一次方程的一组解,则m的值是( )
A. B.3 C. D.
9、关于x,y的方程组的解是,其中y的值被盖住了,不过仍能求出m,则m的值是( )
A. B. C. D.
10、已知关于x、y的方程组的解满足2x﹣y=2k,则k的值为( )
A.k B.k C.k D.k
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、在(1),(2),(3)这三组数值中,_______是方程x-3y=9的解,______是方程2x+y=4的解,_________是方程组的解.
2、有甲乙两个两位数,若把甲数放在乙数的左边,组成的四位数是乙数的201倍,若把乙数放在甲数的左边,组成的四位数比上面的四位数小1188,求这两个两位数.
解:设甲数为x,乙数为y.
依题意,得
解此方程组,得___________
所以,甲数是24,乙数是12
3、如果与的和是单项式, 则________ .
4、为积极响应教育部对中小学生实行“五项管理”之读物管理,某书店购进了大量的文史类、科普类、生活类读物,每类读物进价分别是12元,10元,8元.同类读物的标价相同,且科普类和生活类读物的标价一样,该书店对这三类读物全部打6折销售.若每类读物的销量相同,则书店不亏不赚,此时生活类读物利润率为.若文史类、科普类、生活类销量之比是,则书店销售这三类读物的总利润率为_____.(利润率)
5、通过“___________”或“___________”进行消元,把“三元”转化为“___________ ”,使解三元一次方程组转化为解___________,进而再转化为解___________.
三、解答题(5小题,每小题10分,共计50分)
1、对于任意一个四位数,若千位上的数字与百位上的数字之和是十位上的数字与个位上的数字之和的2倍,则称是“2倍和数”.如,因为,所以3504是“2倍和数”;,因为,所以6824不是“2倍和数”.
(1)判断6423,4816是否为“2倍和数”?并说明理由;
(2)对于“2倍和数”,当百位上的数字是个位上的数字的3倍,且各数位上的数字之和能被9整除时,记.求的最大值和最小值.
2、已知xm-n+1y与-2xn-1y3m-2n-5是同类项,求m和n的值.
3、列方程或方程组解应用题:
某校积极推进垃圾分类工作,拟采购30L和120L两种型号垃圾桶用于垃圾投放.已知采购5个30L垃圾桶和9个120L垃圾桶共需付费1000元;采购10个30L垃圾桶和5个120L垃圾桶共需付费700元,求30L垃圾桶和120L垃圾桶的单价.
4、某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔20支,共用了1070元,其中每支毛笔比钢笔贵6元.
(1)求钢笔和毛笔的单价各为多少元?
(2)①学校仍需要购买上面的两种笔共60支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔,需支领1322元.”王老师算了一下,说:“如果只买这两种笔,你的帐肯定算错了!”请判断王老师的说法是否正确,并说明理由;
②陈老师突然想起,所做的预算中还包括一支签字笔.如果签字笔的单价为不大于10元的整数,请直接写出签字笔的单价
5、解方程组:
(1)
(2)
-参考答案-
一、单选题
1、B
【解析】
【分析】
直接利用二元一次方程的定义求解即可;
【详解】
解:A、该方程中未知数的最高次数是2,不属于二元一次方程,故不符合题意.
B、该方程符合二元一次方程的定义,故符合题意.
C、该方程含有未知数的项最高次数是2,不属于二元一次方程,故不符合题意.
D、该方程中含有3个未知数,不属于二元一次方程,故不符合题意.
故选:B.
【点睛】
本题主要考查二元一次方程的定义,含有两个未知数,且未知数的最高次数都是一次的整式方程是二元一次方程.熟练掌握二元一次方程的概念是解题的关键.
2、B
【解析】
【分析】
根据二元一次方程组的解法以及非负数的性质即可求出答案.
【详解】
解:由题意可知:
解得: ,
故选:B.
【点睛】
本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.
3、A
【解析】
【分析】
利用代入消元法把①代入②,即可求解.
【详解】
解:,
把①代入②,得:.
故选:A
【点睛】
本题主要考查了解二元一次方程组,解题的关键是熟练掌握二元一次方程组数为解法——代入消元法和加减消元法.
4、B
【解析】
【分析】
设每件商品标价x元,进价y元,则根据题意表示出销售8件和销售12件的利润,进而得出等式,求出方程组的解即可.
【详解】
解:设每件商品标价x元,进价y元则根据题意得:
,
解得:,
答:该商品每件进价155元,标价每件200元.
故选:B.
【点睛】
本题考查了二元一次方程的应用,找出正确等量关系是解题关键.
5、A
【解析】
【分析】
用第二个方程减去第一个方程即可解答.
【详解】
解:∵
∴3x-4y-(2x-3y)=8-5
x-y=3.
故选A.
【点睛】
本题主要考查了解二元一次方程组以及求代数式的值,掌握整体法成为解答本题的关键.
6、A
【解析】
【分析】
直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别列出方程即可得出答案.
【详解】
解:设马每匹价值x两,牛每头价值y两,根据题意可列方程组为:
.
故选:A.
【点睛】
此题主要考查了二元一次方程组的应用,正确找到等量关系是解题关键.
7、C
【解析】
【分析】
根据题意,找到关于x、y的两组等式关系,即可列出对应的二元一次方程组.
【详解】
解:由每三人共乘一车,最终剩余2辆车可得:.
由每2人共乘一车,最终剩余9个人无车可乘可得:.
该二元一次方程组为:.
故选:C.
【点睛】
本题主要是考查了列二元一次方程组,熟练根据题意找到等式关系,这是求解该题的关键.
8、A
【解析】
【分析】
把代入5x+3y=1即可求出m的值.
【详解】
把代入5x+3y=1,得
10+3m=1,
∴m=-3,
故选A.
【点睛】
本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.
9、A
【解析】
【分析】
把x=1代入方程组,求出y,再将y的值代入1+my=0中,得到m的值.
【详解】
解:把x=1代入方程组,可得,解得y=2,
将y=2代入1+my=0中,得m=,
故选:A.
【点睛】
此题考查了利用二元一次方程组的解求方程中的字母值,正确理解方程组的解的定义是解题的关键.
10、A
【解析】
【分析】
根据得出,,然后代入中即可求解.
【详解】
解:,
①+②得,
∴③,
①﹣③得:,
②﹣③得:,
∵,
∴,
解得:.
故选:A.
【点睛】
本题考查了解三元一次方程组,根据题意得出的代数式是解题的关键.
二、填空题
1、 (1),(2) (1),(3) (1)
【解析】
【分析】
根据二元一次方程解的定义:使二元一次方程左右两边相等的一组未知数的值,分别将三组数值代入两个方程中求出各自的解,即可得到方程组的解.
【详解】
解:当时,方程的左边为:,方程左右两边相等,
∴是方程的解;
当时,方程的左边为:,方程左右两边相等,
∴是方程的解;
当时,方程的左边为:,方程左右两边不相等,
∴不是方程的解;
当时,方程的左边为:,方程左右两边相等,
∴是方程的解;
当时,方程的左边为:,方程左右两边不相等,
∴不是方程的解;
当时,方程的左边为:,方程左右两边相等,
∴不是方程的解;
∴方程组的解为;
故答案为:①(1),(2);②(1),(3);③(1).
【点睛】
本题主要考查了二元一次方程和二元一次方程组的解,数值二元一次方程解得定义是解题的关键.
2、
【解析】
略
3、5
【解析】
【分析】
两个单项式,所含的字母相同,相同字母的指数也相同,则称这两个单项式是同类项,据此转化为解二元一次方程组,解得,再将其代入多项式中计算即可.
【详解】
解:∵与的和是单项式,
∴与是同类项,
∴,
解得:.
∴.
故答案为:5.
【点睛】
本题考查同类项的定义,合并同类项,涉及简单二元一次方程组解法,代数式求值,是基础考点,难度较易,掌握相关知识是解题关键.
4、
【解析】
【分析】
设文史类、科普类、生活类读物的标价分别为元,元,元,则实际的售价分别为:元,元,元,根据每类读物的销量相同且都为,则书店不亏不赚,而生活类读物利润率为.列方程组,再解方程组求解的值,再计算当文史类、科普类、生活类销量之比是时的利润率即可.
【详解】
解:因为科普类和生活类读物的标价一样,
设文史类、科普类、生活类读物的标价分别为元,元,元,
则实际的售价分别为:元,元,元,
当每类读物的销量相同且都为,则书店不亏不赚,而生活类读物利润率为.
解得:
当文史类、科普类、生活类销量之比是,设文史类、科普类、生活类销量分别为: 则书店销售这三类读物的总利润率为:
故答案为:
【点睛】
本题考查的是二元一次方程组的应用,理解题意,利用字母表示已知量,确定相等关系列方程组都是解本题的关键.
5、 代入 加减 二元 二元一次方程组 一元一次方程
【解析】
略
三、解答题
1、 (1)6423是“2倍和数”, 4816不是“2倍和数”,理由见解析;
(2)最大值是3117,最小值是1107.
【解析】
【分析】
(1)根据定义进行判断即可
(2)设的个位上的数字为,十位上的数字为,则百位上的数字为,千位上的数字为,进而求得的各数位上的数字之和,根据,可得能被3整除,进而求二元一次方程的整数解即可,进而列出,即可求得的最大值和最小值.
(1)
,
∴6423是“2倍和数”,
,
∴4816不是“2倍和数”;
(2)
设的个位上的数字为,十位上的数字为,则百位上的数字为,
千位上的数字为,
,,,,为整数),
的各数位上的数字之和为,
各数位上的数字之和能被9整除,
能被3整除,
或,
,
,
,
的最大值是3117,最小值是1107.
【点睛】
本题考查了新定义,求二元一次方程的整数解,整除,理解新定义是解题的关键.
2、
【解析】
【详解】
解:因为xm-n+1y与-2xn-1y3m-2n-5是同类项,所以
,
整理,得:
④-③,得2m=8,所以m=4.
把m=4代入③,得2n=6,
所以n=3.
所以当时,xm-n+1y与-2xn-1y3m-2n-5是同类项。
3、30L垃圾桶的单价是20元,120L垃圾桶的单价是100元
【解析】
【分析】
设垃圾桶的单价是元,垃圾桶的单价是元,等量关系为:买5个30L垃圾桶的钱+买9个120L垃圾桶的钱=1000 ;买10个30L垃圾桶的钱+买5个120L垃圾桶的钱=700 ;根据这两个等量关系列出方程组并解方程组即可.
【详解】
设垃圾桶的单价是元,垃圾桶的单价是元,
依题意得:,
解得:.
即垃圾桶的单价是20元,垃圾桶的单价是100元.
【点睛】
本题考查了二元一次方程组的应用,关键是理解题意,找到等量关系并正确列出方程组.
4、 (1)钢笔的单价为19元,毛笔的单价为25元
(2)①王老师的说法是正确的,理由见解析;②2元/支或8元/支
【解析】
【分析】
(1)设钢笔的单价为x元,则毛笔的单价为元,根据买钢笔30支,毛笔20支,共用了1070元建立方程,求出其解即可;
(2)①根据第一问的结论设钢笔为y支,所以毛笔则为支,求出方程的解不是整数则说明算错了;
②设钢笔为y支,毛笔则为支,签字笔的单价为a元,根据条件建立方程求出其解就可以得出结论.
(1)
设钢笔的单价为x元,则毛笔的单价为元,
由题意得:,
解得:.,
答:钢笔的单价为19元,毛笔的单价为25元;
(2)
①王老师的说法是正确的.
理由:设钢笔为y支,所以毛笔则为支.
根据题意,得,
解得(不符合题意),
∴陈老师肯定算错了;
②设钢笔为y支,签字笔的单价为a元,则根据题意,得
,
∴,
∵a、y都是整数,
∴应被6整除,
∴a为偶数,
∵a为小于10元的整数,
∴a可能为2、4、6、8,
当时,,,符合题意;
当时,,,不符合题意;
当时,,,不符合题意;
当时,,,符合题意,
∴签字笔的单价可能2元或8元.
【点睛】
本题考查了列二元一次方程解实际问题的运用,列一元一次方程解实际问题的运用,在解答时根据题意等量关系建立方程是关键.
5、 (1)
(2)
【解析】
【分析】
(1)用加法消元法求解;
(2)用减法消元法求解.
(1)
∵
①+②得:,
,
将x=3代入①中得:,
得,
∴原方程组的解是.
(2)
将方程组变形为,
②,得③,
③-①,得,
把代入②,得.
∴原方程组的解是.
【点睛】
本题考查了二元一次方程组的解法,根据题目特点,灵活选择解题方法是解题的关键.
2020-2021学年第六章 二元一次方程组综合与测试同步训练题: 这是一份2020-2021学年第六章 二元一次方程组综合与测试同步训练题,共21页。试卷主要包含了下列方程是二元一次方程的是,《孙子算经》记载,已知是二元一次方程,则的值为等内容,欢迎下载使用。
初中数学冀教版七年级下册第六章 二元一次方程组综合与测试练习: 这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试练习,共19页。试卷主要包含了二元一次方程的解可以是,若方程组的解为,则方程组的解为等内容,欢迎下载使用。
数学七年级下册第六章 二元一次方程组综合与测试课后复习题: 这是一份数学七年级下册第六章 二元一次方程组综合与测试课后复习题,共19页。试卷主要包含了若是方程的解,则等于,已知a,b满足方程组则的值为,已知是方程的解,则k的值为等内容,欢迎下载使用。