


初中数学冀教版七年级下册第六章 二元一次方程组综合与测试单元测试课后作业题
展开冀教版七年级下册第六章二元一次方程组单元测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、若关于x,y的方程是二元一次方程,则m的值为( )
A.﹣1 B.0 C.1 D.2
2、下列方程中,是二元一次方程组的是( )
A. B. C. D.
3、如图,9个大小、形状完全相同的小长方形,组成了一个周长为46的大长方形,若设小长方形的长为,宽为,则可列方程为( )
A. B.
C. D.
4、如果二元一次方程组的解是二元一次方程的一个解,那么的值是( )
A.9 B.7 C.5 D.3
5、已知方程组的解满足,则的值为( )
A.7 B. C.1 D.
6、中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹价值x两,牛每头价值y两,根据题意可列方程组为( )
A. B. C. D.
7、已知,则( )
A. B. C. D.
8、下列方程组中,属于二元一次方程组的是( )
A. B.
C. D.
9、下列各组数值是二元一次方程的解是( )
A. B. C. D.
10、在下列各组数中,是方程组的解的是( )
A. B. C. D.
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、北京冬奥会志愿者招募迎来全球申请热潮,赛会志愿者将在北京赛区、延庆赛区、张家口赛区的竞赛场馆开展志愿服务,北京赛区、延庆赛区、张家口赛区的志愿者人数之比为5∶3∶2.随着赛事的调整,各赛区的志愿者人数均要增加,其中等于其余两个赛区增加的总人数的,则增加后北京赛区志愿者人数占所有赛区增加后的总人数的.为使延庆赛区、张家口赛区增加后的志愿者人数之比为6∶5,则延庆赛区增加的志愿者人数与各赛区增加的志愿者总人数之比是______.
2、已知等式(2A﹣7B)x+(3A﹣8B)=8x+10,对一切实数x都成立,则A+B=_____.
3、将方程2x+y﹣1=0变形为用含有y的式子表示x,则x=__________________.
4、通过“___________”或“___________”进行消元,把“三元”转化为“___________ ”,使解三元一次方程组转化为解___________,进而再转化为解___________.
5、2022年北京冬奥会已经越来越近了,这是我国重要历史节点的重大标志性活动,更是全国人民的一次冰雪运动盛宴,与此同时北京冬奥会吉祥物冰墩墩也受到人们的喜爱,关于冰墩墩的各种周边纪念品:徽章、风铃、抱枕、公仔正在某商场火热销售中.已知徽章和抱枕的价格相同,公仔的单价是风铃的两倍,且徽章和风铃的单价之和不超过120元.元旦节期间,徽章的销售数量是公仔数量的2倍,风铃和抱枕的销售数量相同,其中徽章和风铃共卖出120件,抱枕和公仔的销售总额比风铃和徵章的销售总额多2200元,则徽章和风铃销售总额的最大值是______元.
三、解答题(5小题,每小题10分,共计50分)
1、解方程组:
(1)
(2)
2、解方程组
(1)
(2)
3、解方程组
4、若一个三位正整数(各个数位上的数字均不为0)满足,则称这个三位正整数为“长久数”.对于一个“长久数”m,将它的百位数字和个位数字交换以后得到新数n,记.如:满足,则216为“长久数”,那么,所以.
(1)求、的值;
(2)对于任意一个“长久数”m,若能被5整除,求所有满足条件的“长久数”.
5、以“花开中国梦”为主题的第十届中国花卉博览会于2021年5月21日至7月2日在上海市崇明区东平国家森林公园举办,本届花博会的门票分为平日票、指定日票等种类,其中平日票每张120元,指定日票每张180元,小明计划用2100元购买平日票和指定日票共15张.
(1)求小明计划购买平日票和指定日票各几张?
(2)为了鼓励大家提前购买,主办方决定,凡是在5月21日前购票的,平日票和指定日票都可以享受低于原价的预售价.小明决定按照预售价提前购票,在购票时小明发现:如果不改变原计划购买的门票种类及相应的张数,总金额可以节约300元;如果不改变原计划购票的总金额,那么可以购买5张平日票和10张指定日票,求平日票和指定日票的预售价分别是多少元?
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据二元一次方程的定义得出且,再求出答案即可.
【详解】
解:∵关于x,y的方程是二元一次方程,
∴且,
解得:m=1,
故选C.
【点睛】
本题考查了二元一次方程的定义,能熟记二元一次方程的定义是解此题的关键.
2、B
【解析】
【分析】
根据二元一次方程组的定义解答.
【详解】
解:A中含有两个未知数,含未知数的项的最高次数为2,故不符合定义;
B符合定义,故是二元一次方程组;
C中含有分式,故不符合定义;
D含有三个未知数,故不符合定义;
故选:B.
【点睛】
此题考查了二元一次方程组定义:含有两个未知数,且含有未知数的项的最高次数为2的整式方程是二元一次方程组,熟记定义是解题的关键.
3、A
【解析】
【分析】
根据图形可知,大长方形的长=7个小长方形的宽=2小长方形的长,大长方形的宽=小长方形的长+小长方形的宽,由此即可列出方程.
【详解】
解:设小长方形的长为x,宽为y,
由题意得: 或,
故选A.
【点睛】
本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够正确理解题意和掌握长方形周长公式.
4、B
【解析】
【分析】
先求出的解,然后代入可求出a的值.
【详解】
解:,
由①+②,可得2x=4a,
∴x=2a,
将x=2a代入①,得
2a-y=a,
∴y=2a﹣a=a,
∵二元一次方程组的解是二元一次方程的一个解,
∴将代入方程3x﹣5y﹣7=0,可得6a﹣5a﹣7=0,
∴a=7,
故选B.
【点睛】
本题考查了二元一次方程的解,以及二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键.
5、D
【解析】
【分析】
①+②得出x+y的值,代入x+y=1中即可求出k的值.
【详解】
解:
①+②得:3x+3y=4+k,
∴,
∵,
∴,
∴,
解得:,
故选:D
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.
6、A
【解析】
【分析】
直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别列出方程即可得出答案.
【详解】
解:设马每匹价值x两,牛每头价值y两,根据题意可列方程组为:
.
故选:A.
【点睛】
此题主要考查了二元一次方程组的应用,正确找到等量关系是解题关键.
7、B
【解析】
【分析】
根据二元一次方程组的解法以及非负数的性质即可求出答案.
【详解】
解:由题意可知:
解得: ,
故选:B.
【点睛】
本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.
8、C
【解析】
【分析】
根据二元一次方程组的基本形式及特点进行判断,即①含有两个二元一次方程,②方程都为整式方程,③未知数的最高次数都为一次.
【详解】
解:A、该方程组中的第二个方程的最高次数为2,不是二元一次方程组,故本选项不符合题意;
B、该方程组的第一个方程不是整式方程,不是二元一次方程组,故本选项不符合题意;
C、该方程组符合二元一次方程组的定义,故本选项符合题意;
D、该方程组中含有3个未知数,不是二元一次方程组,故本选项不符合题意;
故选:C.
【点睛】
本题主要考查二元一次方程组的判定,解题的关键是熟练掌握二元一次方程组的基本形式及特点.
9、D
【解析】
【分析】
将选项中的解分别代入方程,使方程成立的即为所求.
【详解】
解:A.代入方程,,不满足题意;
B.代入方程,,不满足题意;
C.代入方程,,不满足题意;
D.代入方程,,满足题意;
故选:D.
【点睛】
本题考查了二元一次方程的解,熟练掌握二元一次方程的解与二元一次方程的关系是解题的关键.
10、D
【解析】
【分析】
根据二元一次方程组的解可把选项逐一代入求解即可.
【详解】
解:∵
∴把代入方程①得:,代入②得:,所以该解不是方程组的解,故A选项不符合题意;
把代入方程①得:,代入②得:,所以该解不是方程组的解,故B选项不符合题意;
把代入方程①得:,代入②得:,所以该解不是方程组的解,故C选项不符合题意;
把代入方程①得:,代入②得:,所以该解是方程组的解,故D选项符合题意;
故选D.
【点睛】
本题主要考查二元一次方程组的解,熟练掌握二元一次方程组的解是解题的关键.
二、填空题
1、
【解析】
【分析】
根据题意可设北京赛区、延庆赛区、张家口赛区的志愿者原有人数分别为 ,延庆赛区增加的志愿者人数为 ,张家口赛区增加的志愿者人数为,则北京赛区志愿者增加的人数为 ,根据延庆赛区、张家口赛区增加后的志愿者人数之比为6∶5,可得 ,再由增加后北京赛区志愿者人数占所有赛区增加后的总人数的.可得 ,从而得到 ,即可求解.
【详解】
解:根据题意可设北京赛区、延庆赛区、张家口赛区的志愿者原有人数分别为 ,延庆赛区增加的志愿者人数为 ,张家口赛区增加的志愿者人数为,则北京赛区志愿者增加的人数为 ,
∵延庆赛区、张家口赛区增加后的志愿者人数之比为6∶5,
∴ ,解得: ,
∵增加后北京赛区志愿者人数占所有赛区增加后的总人数的.
∴
整理得: ,
∴,解得: ,
∴ ,
即延庆赛区增加的志愿者人数与各赛区增加的志愿者总人数之比为.
故答案为:
【点睛】
本题主要考查了列代数式,三元一次方程的应用,明确题意,准确得到等量关系是解题的关键.
2、##0.4
【解析】
【分析】
根据关键语“等式(2A﹣7B)x+(3A﹣8B)=8x+10对一切实数x都成立”,只要让等式两边x的系数和常数分别相等即可列出方程组求解.
【详解】
解:(2A﹣7B)x+(3A﹣8B)=8x+10,
∴,
解得:,
则A+B=,
故答案为:.
【点睛】
本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.
3、
【解析】
【分析】
将y看作已知数求出x即可.
【详解】
解:2x+y﹣1=0
2x=1-y,
x= .
故答案为:.
【点睛】
本题考查了二元一次方程的解法,先用含其中一个未知数的代数式表示另一个未知数,本题即是将y看作已知数求出x.
4、 代入 加减 二元 二元一次方程组 一元一次方程
【解析】
略
5、6100
【解析】
【分析】
设徽章和抱枕的价格为a元,风铃的价格为b元,公仔的价格为2b元,公仔的销售数量为m件,徽章的销售数量为2m件,则风铃和抱枕的销售数量为(120-2m)件,根据题意列出方程求解即可.
【详解】
解:设徽章和抱枕的价格为a元,风铃的价格为b元,公仔的价格为2b元,公仔的销售数量为m件,徽章的销售数量为2m件,则风铃和抱枕的销售数量为(120-2m)件,根据题意列方程得,,
化简得,;
徽章和风铃销售总额为,
把代入得,;
∵,
当时,徽章和风铃销售总额的最大,最大值是(元);
故答案为:6100.
【点睛】
本题考查了方程和不等式的应用,解题关键是根据题意中的数量关系,设未知数,列出方程,根据等式的性质进行变形,整体代入求解.
三、解答题
1、 (1)
(2)
【解析】
【分析】
(1) 利用加减消元法求出解即可;
(2) 方程组整理后,利用加减消元法求出解即可.
(1)
解:,
①+②得,3x=9,即x=3,
把x=3代入①得,y=2,
则方程组的解为;
(2)
解:方程组整理得:,
①×2+②得,y=5,
把y=5代入①得,x=4,
则方程组的解为
【点睛】
本题考查二元一次方程组的解法.关键是熟练掌握代入消元法和加减消元法的应用.
2、 (1)
(2)
【解析】
【分析】
(1)利用加减消元法解方程组即可;
(2)利用代入消元法解方程组即可.
(1)
解:
把①代入②得:,即,解得,
把代入到①中得:,
∴方程组的解为:;
(2)
解: ,
用①×2-②得:,解得,
把代入到①中得:,解得
∴方程组的解为:.
【点睛】
本题主要考查了解二元一次方程组,解题的关键在于能够熟知解二元一次方程组的方法.
3、
【解析】
【分析】
把方程组整理后,利用加减消元法求解即可.
【详解】
解:原方程组可化为,
②-①得:6y=12,
解得:y=2,代入①中,
解得:x=,
∴方程组的解为.
【点睛】
本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.
4、 (1),
(2)
【解析】
【分析】
(1)根据定义求解即可;
(2)根据新定义写出,,根据整式的加减化简,进而根据,且能被5整除,得出,解二元一次方程即可求解,从而求得.
(1)
解:∵当时,,
∴
当时,
(2)
设,则,
能被5整除,
是5的倍数
,且是均不为0的正整数
的正整数解为:
又
所有满足条件的“长久数”
【点睛】
本题考查了二元一次方程组的应用,新定义,整除,理解题意是解题的关键.
5、 (1)小明计划购买平日票为10张,指定日票为5张
(2)平日票的预售价为100元,指定日票的预售价为160元
【解析】
【分析】
(1)设小明计划购买平日票为张,指定日票为张,由题意:平日票每张120元,指定日票每张180元,小明计划用2100元购买平日票和指定日票共15张.列出方程组,解方程组即可;
(2)设平日票的预售价为元,指定日票的预售价为元,由题意:不改变原计划购买的门票种类及相应的张数,总金额可以节约300元;不改变原计划购票的总金额,那么可以购买5张平日票和10张指定日票,列出方程组,解方程组即可.
(1)
解:设小明计划购买平日票为张,指定日票为张,
由题意得:,
解得:,
答:小明计划购买平日票为10张,指定日票为5张;
(2)
解:设平日票的预售价为元,指定日票的预售价为元,
由题意得:,
解得:,
答:平日票的预售价为100元,指定日票的预售价为160元.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,解题的关键是正确列出二元一次方程组.
初中数学冀教版七年级下册第六章 二元一次方程组综合与测试同步达标检测题: 这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试同步达标检测题,共21页。试卷主要包含了有下列方程等内容,欢迎下载使用。
冀教版第六章 二元一次方程组综合与测试同步达标检测题: 这是一份冀教版第六章 二元一次方程组综合与测试同步达标检测题,共22页。试卷主要包含了下列方程中,①x+y=6;②x,在一次爱心捐助活动中,八年级,已知,则,已知x,y满足,则x-y的值为等内容,欢迎下载使用。
数学第六章 二元一次方程组综合与测试同步练习题: 这是一份数学第六章 二元一次方程组综合与测试同步练习题,共18页。