初中数学第六章 二元一次方程组综合与测试课后练习题
展开
这是一份初中数学第六章 二元一次方程组综合与测试课后练习题,共21页。
冀教版七年级下册第六章二元一次方程组同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、若关于x,y的二元一次方程组的解,也是二元一次方程x+2y=﹣1的解,则a的值为( )A.2 B.1 C. D.02、若关于x、y的二元一次方程的解,也是方程的解,则m的值为( )A.-3 B.-2 C.2 D.无法计算3、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大9,则这样的两位数共有( )A.5个 B.6个 C.7个 D.8个4、中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹价值x两,牛每头价值y两,根据题意可列方程组为( )A. B. C. D.5、已知x=2,y=﹣1是方程ax+y=3的一组解,则a的值为( )A.2 B.1 C.﹣1 D.﹣26、在下列各组数中,是方程组的解的是( )A. B. C. D.7、现有一批脐橙运往外地销售,A型车载满一次可运3吨,B型车载满一次可运4吨,现有脐橙31吨,计划同时租用A,B两种车型,一次运完且恰好每辆车都载满脐橙,租车方案共有( )A.2种 B.3种 C.4种 D.5种8、《九章算术》是中国古代的一本重要数学著作,其中有一道方程的应用题:“五只雀、六只燕,共重16两,雀重燕轻.互换其中一只,恰好一样重.问每只雀、燕的重量各为多少?”解:设雀每只x两,燕每只y两,则可列出方程组为( )A. B.C. D.9、为奖励期中考试中成绩优异的同学,七(二)班计划用50元购买笔记本和中性笔两种奖品,已知笔记本的价格为7元,中性笔的价格为2元,若两种奖品都买,则购买的方案有几种?( )A.2 B.3 C.4 D.510、由方程组可以得出关于x和y的关系式是( )A. B. C. D.第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、已知,则的值是 __.2、含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做___________.3、三元一次方程组:含有___未知数,每个方程中含有未知数的项的___都是____,并且一共有____方程,这样的方程组叫做三元一次方程组.4、三元一次方程:含有___未知数,并且含有未知数的项的___都是____,这样的方程叫做三元一次方程.5、我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”这首诗的意思是说:“如果一间客房住七个人,那么就剩下七个人安排不下;如果一间客房住九个人,那么就空出一间客房.”问,现有客房多少间?房客多少人?设现有客房x间,房客y人,请你列出二元一次方程组:_____.三、解答题(5小题,每小题10分,共计50分)1、阅读:一个两位数,若它刚好等于它各位数字之和的整数倍,我们称这个两位数为本原数;把一个本原数的十位数字、个位数字交换后得到一个新的两位数,我们称这个新的两位数为本原数的奇异数.(1)一本原数刚好是组成它的两个数字之和的4倍.请写出符合条件的所有本原数;(2)一本原数刚好等于组成它的数字之和的3倍,它的奇异数刚好是两个数字之和的k倍.请问k的值是多少?(3)一个本原数刚好等于组成它的数字之和的m倍,它的奇异数刚好是这个数的数字之和的n倍,试说明m和n的关系.2、(1)解方程:;(2)解方程组:3、2021年是中国历史上的超级航天年,渝飞航模专卖店看准商机,8月初推出了“天问一号”和“嫦娥五号”两款模型.每个“天问一号”模型的售价是90元,每个“嫦娥五号”模型的售价是100元.(1)若8月份销售“天问一号”模型的数量比“嫦娥五号”模型数量多200个,销售两种模型的总销售额为56000元,求销售“天问一号”模型和“嫦娥五号”模型的数量各是多少?(2)该店决定从9月1日起推出“逐梦航天、仰望星空”优惠活动,9月份,每个“天问一号”模型的售价与8月份相同,销量比8月份增加a%;每个“嫦娥五号”模型的售价在8月份的基础上降价a%,销量比8月份增加a%.①用含有a的代数式填表(不需化简): 9月份的售价(元)9月份销量“天问一号”模型90 “嫦娥五号”模型 ②据统计,该店在9月份的销售总额比8月份的销售总额增加a%,求a的值.4、例3.林芳、向民、艳君三位同学去商店买文具用品,林芳说:“我买了4支水笔,2本笔记本,10本作文本共用了19元.”向民说:“我买了2支水笔,3本笔记本,10本练习本共用了20元,”艳君说:“我买了12本练习本,8本作文本共用了10元;作文本与练习本的价格是一样哦!”请根据以上内容,求出笔记本,水笔,练习本的价格.5、解方程(组):(1)(2) -参考答案-一、单选题1、D【解析】【分析】解方程组,用a表示x,y,把x,y代入x+2y=﹣1中得到关于a的方程,解方程即可.【详解】解:,①+②得2x=2a+6,x=a+3,把代入①,得a+3+y=-a+1,y=-2a-2,∵x+2y=﹣1∴a+3+2(-2a-2)=-1,∴a=0,故选D.【点睛】本题考查了解二元一次方程组以及二元一次方程的解,解方程组,用a表示x,y,把x,y代入x+2y=﹣1中得到关于a的方程是解题的关键.2、C【解析】【分析】将m看作已知数值,利用加减消元法求出方程组的解,然后代入求解即可得.【详解】解:,得:,解得:,将代入①可得:,解得:,∴方程组的解为:,∵方程组的解也是方程的解,代入可得,解得,故选:C.【点睛】题目主要考查解二元一次方程组求参数,熟练掌握解二元一次方程组的方法是解题关键.3、D【解析】【分析】设原来的两位数为10a+b,则新两位数为,根据新两位数比原两位数大9,列出方程,找出符合题意的解即可.【详解】解:设原来的两位数为10a+b,根据题意得:10a+b+9=10b+a,解得:b=a+1,因为可取1到8个数,所以这两位数共有8个,它们分别,12,23,34,45,56,67,78,89,都是个位数字比十位数字大1的两位数.故选:D.【点睛】本题考查了二元一次方程的应用,解题的关键是弄清题意,找合适的等量关系,列出方程,再求解,弄清两位数的表示是:十位上的数+个位上的数,注意不要漏数.4、A【解析】【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别列出方程即可得出答案.【详解】解:设马每匹价值x两,牛每头价值y两,根据题意可列方程组为:.故选:A.【点睛】此题主要考查了二元一次方程组的应用,正确找到等量关系是解题关键.5、A【解析】【分析】把x=2,y=﹣1代入方程ax+y=3中,得到2a-1=3,解方程即可.【详解】∵x=2,y=﹣1是方程ax+y=3的一组解,∴2a-1=3,解得a=2,故选A.【点睛】本题考查了二元一次方程的解即使方程两边相等的一组未知数的值,一元一次方程的解法,正确理解定义,规范解一元一次方程是解题的关键.6、D【解析】【分析】根据二元一次方程组的解可把选项逐一代入求解即可.【详解】解:∵∴把代入方程①得:,代入②得:,所以该解不是方程组的解,故A选项不符合题意;把代入方程①得:,代入②得:,所以该解不是方程组的解,故B选项不符合题意;把代入方程①得:,代入②得:,所以该解不是方程组的解,故C选项不符合题意;把代入方程①得:,代入②得:,所以该解是方程组的解,故D选项符合题意;故选D.【点睛】本题主要考查二元一次方程组的解,熟练掌握二元一次方程组的解是解题的关键.7、B【解析】【分析】设租A型车x辆,租B型车y辆,根据题意列方程得,正整数解即可.【详解】解:设租A型车x辆,租B型车y辆,根据题意列方程得,∴,∵均为正整数,∴是4的倍数,小于31的4的倍数有28,24,20,16,12,8,4,∴=28,解得x=1,,∴=24,解得,,∴=20,解得,∴=16,解得x=5,,∴=12,解得,∴=8,解得,∴=4,解得x=9,,∴租车方案有三种分别为:租A型车1辆,租B型车7辆或租A型车5辆,租B型车4辆或租A型车9辆,租B型车1辆.故选择B.【点睛】本题考查二元一次方程的正整数解,掌握应用二元一次方程解应用题,利用二元一次方程的正整数解解决方案设计问题是解题关键.8、B【解析】【分析】根据题意列二元一次方程组即可.【详解】解:设雀每只x两,燕每只y两则五只雀为5x,六只燕为6y共重16两,则有互换其中一只则五只雀变为四只雀一只燕,即4x+y六只燕变为五只燕一只雀,即5y+x且一样重即由此可得方程组.故选:B.【点睛】列二元一次方程组解应用题的一般步骤审:审题,明确各数量之间的关系;设:设未知数(一般求什么,就设什么);找:找出应用题中的相等关系;列:根据相等关系列出两个方程,组成方程组;解:解方程组,求出未知数的值;答:检验方程组的解是否符合题意,写出答案.9、B【解析】【分析】设可以购进笔记本x本,中性笔y支,利用总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出购买方案的个数.【详解】解:设可以购进笔记本x本,中性笔y支,依题意得: ,∴ ,∵x,y均为正整数,∴ 或 或 ,∴共有3种购买方案,故选:B.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.10、C【解析】【分析】分别用x,y表示m,即可得到结果;【详解】由,得到,由,得到,∴,∴;故选C.【点睛】本题主要考查了二元一次方程组的化简,准确分析计算是解题的关键.二、填空题1、【解析】【分析】根据乘方和绝对值的性质,得二元一次方程组并求解,即可得到x和y的值,结合代数式的性质计算,即可得到答案.【详解】,,,即,将代入到,得:去括号,得:移项并合并同类项,得:将代入到,得∴,故答案为:.【点睛】本题考查了乘方、绝对值、二元一次方程组、代数式的知识;解题的关键是熟练掌握二元一次方程组的性质,从而完成求解.2、三元一次方程组【解析】略3、 三个 次数 1 3个【解析】【分析】由题意直接根据三元一次方程组的定义进行填空即可.【详解】解:含有三个未知数,每个方程中含未知数的项的次数均为1,并且一共有3个方程,这样的方程组叫做三元一次方程组.故答案为:三个,次数,1,3个.【点睛】本题考查三元一次方程组的定义,注意掌握含有三个未知数,每个方程中含未知数的项的次数均为一次,并且一共有3个方程,这样的方程组叫做三元一次方程组.4、 三个 次数 1【解析】【分析】由题意直接利用三元一次方程的定义进行填空即可.【详解】解:含有三个未知数,并且含有未知数的项的次数都是1,这样的方程叫做三元一次方程.故答案为:三个,次数,1.【点睛】本题考查三元一次方程的定义,注意掌握含有三个未知数,并且含有未知数的项的次数都是1,这样的方程叫做三元一次方程.5、【解析】【分析】设该店有客房x间,房客y人;根据一房七客多七客,一房九客一房空得出方程组即可.【详解】解:设该店有客房x间,房客y人;根据题意得:,故答案为:.【点睛】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.三、解答题1、 (1)12,24,36,48;(2)(3)【解析】【分析】(1)设这个本原数的十位数字为x,个位数字为y,有,得的关系,进而得到答案.(2)设这个本原数的十位数字为x,个位数字为y,有,得的关系,找出满足条件的数,找出奇异数,进行求解即可.(3)设这个本原数的十位数字为x,个位数字为y.则由题意可列方程组,两式相加求解即可.(1)解:设这个本原数的十位数字为x,个位数字为y.由题意知:解得∴符合条件的本原数为12,24,36,48;(2)解:设这个本原数的十位数字为x,个位数字为y.由题意知:解得∴满足条件的数为27,它的奇异数是72∴∴;(3)解:设这个本原数的十位数字为x,个位数字为y.由题意知:①+②得∴【点睛】本题考查了二元一次方程组的应用.解题的关键在于依据题意正确的列方程.2、(1) ;(2)【解析】【分析】(1)先去分母,再去括号,然后移项合并同类项,即可求解;(2)由①+②×2可得 ,再代入②,即可求解.【详解】解:去分母得: ,去括号得: ,移项合并同类项得: ,解得: ;(2)由①+②×2得: ,解得: ,把代入②得: ,解得: ,∴原方程组的解为 .【点睛】本题主要考查了解一元一次方程和解二元一次方程组,熟练掌握一元一次方程和二元一次方程组的解法是解题的关键.3、 (1)销售天问一号模型和嫦娥五号模型的数量各是400个与200个(2)①100(1- a%);400(1+a%);200(1+a%);②10【解析】【分析】(1)首先设销售“天问一号”模型和“嫦娥五号”模型的数量各x个,y个,根据销售“天问一号”模型的数量比“嫦娥五号”模型数量多200个可列出方程,由销售两种模型的总销售额为56000元可列出方程,把这两个方程组成一个二元一次方程组,解这个方程组即可得到本题答案;(2)①由9月份,每个“天问一号”模型的售价与8月份相同,销量比8月份增加a%,可得9月份“天问一号”模型的销量为400(1+a%)个;“嫦娥五号”模型的售价在8月份的基础上降价a%,,销量比8月份增加a%,可得“嫦娥五号”模型的销量为200(1+a%)个,可得“嫦娥五号”模型的售价为100(1- a%);②根据该店在9月份的销售总额比8月份的销售总额增加a%,可得90×400(1+a%)+100(1﹣a%)×200(1+a%)=(90×400+100×200)(1+a%),计算即可得出a的值.(1)解:设销售“天问一号”模型和“嫦娥五号”模型的数量各x个,y个,根据题得:解得:答:销售“天问一号”模型和“嫦娥五号”模型的数量各是400个与200个。(2)解:①∵9月份,“嫦娥五号”模型的售价在8月份的基础上降价a% ,“天问一号”模型的销量比8月份增加a%,“嫦娥五号”模型的销量比8月份增加a%,∴9月份,“天问一号”模型的销量为400(1+a%)个,“嫦娥五号”模型的销量为200(1+a%)个.故答案为:100(1- a%);400(1+a%);200(1+a%).②依题意得:90×400(1+a%)+100(1﹣a%)×200(1+a%)=(90×400+100×200)(1+a%),整理得:3a2﹣30a=0,解得:a1=10,a2=0(不合题意,舍去).答:a的值为10.【点睛】本题主要考查了二元一次方程组的应用,一元二次方程的应用等知识.4、笔记本每本的价格是4元,水笔每支1.5元,练习本每本0.5元.【解析】【分析】设笔记本每本的价格是x元,水笔每支y元,练习本或作文本每本的价格为z元,根据林芳、向民、艳君三个人的话可以建立三个方程,从而构成三元一次方程组,求出其解即可.【详解】设笔记本每本的价格是x元,水笔每支y元,练习本或作文本每本的价格为z元,由题意得 解得 答:笔记本每本的价格是4元,水笔每支1.5元,练习本每本0.5元.【点睛】本题考查了列三元一次方程组解实际问题的运用,三元一次方程组的解法的运用,解答时找准等量关系建立方程是关键.5、 (1)y=-1(2)【解析】【分析】(1)方程去分母,去括号,移项,合并同类项,把y系数化为1,即可求出解;(2)方程组利用代入消元法求出解即可.(1)解:去分母得:3(3y-1)-2(5y-7)=12,去括号得:9y-3-10y+14=12,移项得:9y-10y=12+3-14,合并得:-y=1,解得:y=-1;(2)解:①+②得:4x=16,解得:x=4,把x=4代入①得:4+2y=10,解得:y=3,则方程组的解为【点睛】此题考查了解二元一次方程组,以及解一元一次方程,熟练掌握方程组及方程的解法是解本题的关键.
相关试卷
这是一份数学七年级下册第六章 二元一次方程组综合与测试当堂达标检测题,共18页。试卷主要包含了有下列方程,已知x,y满足,则x-y的值为,《九章算术》中记载,若关于x等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试同步练习题,共19页。试卷主要包含了二元一次方程的解可以是等内容,欢迎下载使用。
这是一份初中数学第六章 二元一次方程组综合与测试课时作业,共20页。试卷主要包含了用代入消元法解关于等内容,欢迎下载使用。

