2021学年第六章 二元一次方程组综合与测试复习练习题
展开冀教版七年级下册第六章二元一次方程组章节测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、已知关于x,y的二元一次方程组的解是,则a+b的值是( )
A.1 B.2 C.﹣1 D.0
2、如果关于x和y的二元一次方程组的解中的x与y的值相等,则a的值为( )
A.-2 B.-1 C.2 D.1
3、己知是关于,的二元一次方程的解,则的值是( )
A.3 B. C.2 D.
4、如图,在大长方形中不重叠的放入七个长、宽都相同的小长方形,根据图中给出的数据,可得出阴影部分面积为( )
A.48 B.52 C.58 D.64
5、关于x,y的二元一次方程组的解为正整数,则满足条件的所有整数a的和为( )
A.1 B.﹣1 C.2 D.﹣3
6、下列方程中,是关于x的一元二次方程的是( )
A.x(x-2)=0 B.x2-1-y=0 C.x2+1=x2-2x D.ax2+c=0
7、在沙县国际连锁早餐店里,李大爷买5个馒头、3个包子,老板少拿2元,只要17元;张大妈买11个馒头、5个包子,老板以售价的九折优惠,只要33.3元.若馒头每个元,包子每个元,依题意可列方程组为( )
A. B.
C. D.
8、如图,用12块形状和大小均相同的小长方形纸片拼成一个宽是60厘米的大长方形,则每个小长方形的周长是( )
A.60厘米 B.80厘米 C.100厘米 D.120厘米
9、下列方程中,①x+y=6;②x(x+y)=2;③3x-y=z+1;④m+=7是二元一次方程的有( )
A.1个 B.2个 C.3个 D.4个
10、已知关于x、y的方程组的解满足2x﹣y=2k,则k的值为( )
A.k B.k C.k D.k
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、二元一次方程组中有两个未知数,如果消去其中的一个未知数,那么就把二元一次方程组转化成____________方程了,于是可以求出其中的一个未知数,然后再求另一个未知数.这种将未知数的个数由多转化少、逐一解决的想法,叫做____________思想.
2、红星体育用品厂生产了一种体育用品礼品套装,已知该套装一套包含2个足球,4个篮球,6副羽毛球.一爱心企业向该厂订购了一批礼品套装,捐赠给希望小学,以丰富师生的课外活动,他们需要厂家在10天内生产完该套装并交货.红星体育用品厂将工人分为A、B、C三个组,分别生产足球、篮球、羽毛球,他们于某天零点开始工作,每天24小时轮班连续工作.(假设每组每小时工作效率不变).若干天后的零点A组完成任务,再过几天后(不小于1天)的中午12点,B组完成任务,再过几天(不小于1天)后的下午6点(即当天18点),C组完成任务.已知A、B、C三个组每天完成的任务数分别是240个,320个,320副,则该爱心企业一共订购了__________套体育用品礼品套装.
3、已知,则的值是__.
4、如图,长青化工厂与A,B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.公路运价为1. 5元/(t·km),铁路运价为1.2元/(t·km),这两次运输共支出公路运费15 000元,铁路运费97 200元.这批产品的销售款比原料费与运输费的和多多少元?
解:设产品重x吨,原料重y吨.
由题意可列方程组
解这个方程组,得___________
因为毛利润-销售款-原料费-运输费
所以这批产品的销售款比原料费与运输的和多___________元.
5、已知5xm﹣2﹣y2n+5=0是关于x、y的二元一次方程,则m﹣n=___.
三、解答题(5小题,每小题10分,共计50分)
1、已知方程组的解适合,求m的值.
2、为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,下表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分:(水价计费=自来水销售费用+污水处理费用)
自来水销售价格 | 污水处理价格 (单价:元/吨) | 每户每月用水量 (单价:元/吨) |
17吨及以下 | a | 0.80 |
超过17吨不超过 30吨的部分 | b | 0.80 |
超过30吨的部分 | 6.00 | 0.80 |
已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.
(1)求a,b的值.
(2)6月份小王家用水32吨,应交水费多少元.
(3)若林芳家7月份缴水费303元,她家用水多少吨?
3、解方程组:.
4、解方程(组)
(1);
(2).
5、解方程组:
-参考答案-
一、单选题
1、B
【解析】
【分析】
将代入即可求出a与b的值;
【详解】
解:将代入得:
,
∴a+b=2;
故选:B.
【点睛】
本题考查二元一次方程组的解;熟练掌握方程组与方程组的解之间的关系是解题的关键.
2、C
【解析】
【分析】
先根据x=y,把原方程变成,然后求出x的值,代入求出a的值即可.
【详解】
解∵x=y,
∴原方程组可变形为,
解方程①得x=1,
将代入②得,
解得,
故选C.
【点睛】
本题主要考查了根据二元一次方程组的解集情况求参数,解题的关键在于能够根据题意把x=y代入到原方程中求出x的值.
3、A
【解析】
【分析】
将代入关于x,y的二元一次方程2x-y=27得到关于k的方程,解这个方程即可得到k的值.
【详解】
解:将代入关于x,y的二元一次方程2x-y=27得:
2×3k-(-3k)=27.
∴k=3.
故选:A.
【点睛】
本题主要考查了二元一次方程的解和解一元一次方程,将方程的解代入原方程是解题的关键.
4、B
【解析】
【分析】
设小长方形的宽为,长为,根据图形列出二元一次方程组求出、的值,再由大长方形的面积减去7个小长方形的面积即可.
【详解】
设小长方形的宽为,长为,
由图可得:,
得:,
把代入①得:,
大长方形的宽为:,
大长方形的面积为:,
7个小长方形的面积为:,
阴影部分的面积为:.
故选:B.
【点睛】
本题考查二元一次方程组,以及代数式求值,根据题意找出、的等量关系式是解题的关键.
5、C
【解析】
【分析】
先求出方程组的解,由方程组的解为正整数分析得出a值.
【详解】
解:解方程组,得,
∵方程组的解为正整数,
∴a=0时,;a=2时,,
∴满足条件的所有整数a的和为0+2=2.
故选:C.
【点睛】
此题考查了已知二元一次方程组的解求参数,解题的关键是求出方程组的解,由方程组解的情况分析得到a的值.
6、A
【解析】
【分析】
根据一元二次方程的定义,对选项逐个判断即可,一元二次方程是指化简后,只含有一个未知数并且未知数的次数为2的整式方程.
【详解】
解:A、含有一个未知数,且未知数次数为2,为一元二次方程,符合题意;
B、含有两个未知数,不是一元二次方程,不符合题意;
C、,含有一个未知数,不是一元二次方程,不符合题意;
D、当时,不是一元二次方程,不符合题意;
故选:A
【点睛】
此题考查了一元二次方程的定义,解题的关键是理解一元二次方程的概念.
7、B
【解析】
【分析】
设馒头每个元,包子每个元,根据李大爷买5个馒头、3个包子的钱数等于元,张大妈买11个馒头、5个包子的钱数等于元列出二元一次方程组即可
【详解】
解:设馒头每个元,包子每个元,根据题意得
故选B
【点睛】
本题考查了列二元一次方程组,求得张大妈买的包子和馒头没打折时的钱数等于元是解题的关键.
8、D
【解析】
【分析】
设小长方形的长为x,小长方形的宽为y,根据题意列出二元一次方程组求解即可;
【详解】
设小长方形的长为x,小长方形的宽为y,
根据题意可得:,
解得:,
∴每个小长方形的周长是;
故选D.
【点睛】
本题主要考查了二元一次方程组的应用,准确计算是解题的关键.
9、A
【解析】
【分析】
含有两个未知数,且含未知数的项的最高次数是1,这样的整式方程是二元一次方程,根据定义逐一分析即可.
【详解】
解:①x+y=6是二元一次方程;
②x(x+y)=2,即不是二元一次方程;
③3x-y=z+1是三元一次方程;
④m+=7不是二元一次方程;
故符合题意的有:①,
故选A
【点睛】
本题考查的是二元一次方程的定义,掌握定义,根据定义判断方程是否是二元一次方程是解本题的关键.
10、A
【解析】
【分析】
根据得出,,然后代入中即可求解.
【详解】
解:,
①+②得,
∴③,
①﹣③得:,
②﹣③得:,
∵,
∴,
解得:.
故选:A.
【点睛】
本题考查了解三元一次方程组,根据题意得出的代数式是解题的关键.
二、填空题
1、 一元一次 消元
【解析】
略
2、360
【解析】
【分析】
由套装中包含足球、篮球、羽毛球的数量可得出:生产篮球的数量为足球的2倍,羽毛球的数量为足球的3倍.设A组生产了x天,B组生产了y天多12小时,C组生产了z天多18小时,根据三种体育用品数量之间的关系,即可得出关于x,y,z的三元一次方程组,解之可得出2z=3y,结合y,z均为一位正整数可得出z为3的倍数,分别代入z=3,z=6,z=9求出x值,再结合该套装一套包含2个足球即可求出该企业订购体育用品礼品套装的数量.
【详解】
解:∵该套装一套包含2个足球,4个篮球,6副羽毛球,
∴生产篮球的数量为足球的2倍,羽毛球的数量为足球的3倍.
设A组生产了x天,B组生产了y天多12小时,C组生产了z天多18小时,
依题意得:,
∴,
∴2z=3y.
又∵x,y,z均为一位正整数,
∴z为3的倍数.
当z=3时,x=,不合题意,舍去;
当z=6时,x=3,此时y=4;
当z=9时,x=,不合题意,舍去.
∴该爱心企业订购体育用品礼品套装的数量为240×3÷2=360(套).
故答案为:360.
【点睛】
本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.
3、2
【解析】
【分析】
由题意根据绝对值和偶次方的非负性得出方程组,求出方程组的解即可.
【详解】
解:,
,,
即,
①②,得,解得,
把代入①,得,解得,
,
.
故答案为:2.
【点睛】
本题考查绝对值,偶次方,二次一元方程组的应用,解题的关键是能求出方程组的解.
4、 14
【解析】
略
5、5
【解析】
【分析】
根据二元一次方程的定义(如果一个方程含有两个未知数,并且所含未知项的次数都为1次,那么这个整式方程就叫做二元一次方程)列出方程求解可得,n﹣2,然后代入代数式求值即可得.
【详解】
解:由题意得:,,
解得:,,
,
故答案为:5.
【点睛】
题目主要考查二元一次方程的定义及求代数式的值,深刻理解二元一次方程的定义是解题关键.
三、解答题
1、
【解析】
【分析】
方程组消去m得到关于x与y的方程,与已知方程联立成方程组,再利用加减消元法解题.
【详解】
解:方程组消去m得,x+4y=2,
联立得
①-②得,
-3y=6
y=-2
把y=-2代入①得,x=10
.
【点睛】
本题考查二元一次方程组的解、解二元一次方程组等知识,是基础考点,掌握相关知识是解题关键.
2、 (1)
(2)129.6元
(3)57.5吨
【解析】
【分析】
(1)根据“4月份用水20吨,交水费66元;5月份用水25吨,交水费91元”,列出方程组,即可求解;
(2)用(30-17)×4.2加上17×2.2再加上超过30吨的部分的污水处理的费用再加上自来水销售费用,即可求解;
(3)由(2)知,用水32吨需交水费129.6元,因为303>129.6,所以林芳家7月份用水量超过30吨,然后设林芳家七月份用水x吨,根据题意列出方程,即可求解.
(1)
解:(1)由题意得: ,
解得 ;
(2)
(2)(30-17)×4.2+17×2.2+(32-30)×6+32×0.8
=129.6(元).
答:当月交水费129.6元;
(3)
(3)由(2)知,用水32吨需交水费129.6元,因为303>129.6,所以林芳家7月份用水量超过30吨,
设林芳家七月份用水x吨,
则(30-17)×4.2+17×2.2+(x-30)×6+x×0.8=303(元),
6.8x=391,
解得:x=57.5,
即七月份林芳家用水57.5吨.
【点睛】
本题主要考查了二元一次方程组和一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.
3、
【解析】
【分析】
由①-②先消去 求解 再把代入①求解 从而可得答案.
【详解】
解:,
①﹣②得:﹣2x=﹣2,
解得:x=1,
把x=1代入①得:1+2y=7,
解得:y=3,
所以原方程组的解为.
【点睛】
本题考查的是利用加减消元法解二元一次方程组,掌握“加减消元法”是解本题的关键.
4、 (1)
(2)
【解析】
【分析】
(1)方程去分母,去括号,移项合并,把m系数化为1,即可求出解;
(2)把原方程组整理后,再利用加减消元法解答即可.
【小题1】
解:,
去分母得:,
去括号得:,
移项合并得:
解得:;
【小题2】
方程组整理得:,
①×5-②得:,
解得:,代入①中,
解得:,
所以原方程组的解为:.
【点睛】
此题考查了解一元一次方程以及解二元一次方程组,掌握消元的思想和消元的方法是解题的关键,消元的方法有:代入消元法与加减消元法.
5、
【解析】
【分析】
原方程组化简后用代入消元法求解.
【详解】
解:原方程组化简,得
,
②×5+①,得
7x=-7,
∴x=-1,
把x=-1代入②,得
-1+y=2,
∴y=3,
∴.
【点睛】
本题考查了二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键.
数学七年级下册第六章 二元一次方程组综合与测试习题: 这是一份数学七年级下册第六章 二元一次方程组综合与测试习题,共18页。试卷主要包含了若是方程的解,则等于等内容,欢迎下载使用。
初中数学冀教版七年级下册第六章 二元一次方程组综合与测试习题: 这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试习题,共20页。试卷主要包含了有下列方程,有下列方程组,二元一次方程的解可以是等内容,欢迎下载使用。
初中数学冀教版七年级下册第六章 二元一次方程组综合与测试习题: 这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试习题,共20页。试卷主要包含了若关于x,若方程组的解为,则方程组的解为,已知是二元一次方程,则的值为,若是方程组的解,则的值为等内容,欢迎下载使用。