冀教版七年级下册第七章 相交线与平行线综合与测试课时作业
展开
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试课时作业,共22页。试卷主要包含了下列命题中,是真命题的是,下列命题中,为真命题的是,下列说法正确的是,下列A等内容,欢迎下载使用。
冀教版七年级下册第七章相交线与平行线定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、下列说法中正确的有( )(1)两条直线被第三条直线所截,同位角相等;(2)若,则,,互余;(3)相等的两个角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离.A.个 B.个 C.个 D.个2、如图,∠1=∠2,∠3=25°,则∠4等于( )A.165° B.155° C.145° D.135°3、下列命题中,是假命题的是( )A.在同一平面内,过一点有且只有一条直线与已知直线垂直B.同旁内角互补,两直线平行C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.过一点有且只有一条直线与已知直线平行4、下列命题中,是真命题的是( )A.两直线平行,同旁内角相等 B.内错角相等,两直线平行C.直角三角形的两锐角互补 D.三角形的一个外角大于任何一个内角5、如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是( )A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°6、如果∠A的两边分别垂直于∠B的两边,那么∠A和∠B的数量关系是( )A.相等 B.互余或互补 C.互补 D.相等或互补7、下列命题中,为真命题的是( )A.若,则 B.若,则C.同位角相等 D.对顶角相等8、下列说法正确的是( )A.同位角相等B.在同一平面内,如果a⊥b,b⊥c,则a⊥cC.相等的角是对顶角D.在同一平面内,如果a∥b,b∥c,则a∥c9、下列A、B、C、D四幅图案中,能通过平移图案得到的是( )A. B. C. D.10、已知∠α的两边分别平行于∠β的两边.若∠α=60°,则∠β的大小为( )A.30° B.60° C.30°或60° D.60°或120°第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、如图,如果______,那么.2、两条平行直线被第三条直线所截,内错角相等.简称:两直线平行,内错角_________.如图,因为a∥b (已知) ,所以∠1=_____(两直线平行,内错角相等) . 3、如图,小明同学在练习本上的相互平行的横格上先画了直线,度量出∠1=112°,接着他准备在点A处画直线.若要使∥,则∠2的度数为_____度.4、如图,过直线AB上一点O作射线OC、OD ,并且OD是∠ AOC的平分线,∠BOC=29°18′, 则∠BOD的度数为___________.5、如图,从A点向已知直线 l 画一条垂直的线段和几条不垂直的线段.连接直线外一点与直线上各点的所有线段中,______最短.简单说成:垂线段最短. 直线外一点到这条直线的垂线段的长度,叫做______.线段______的长度叫做点A到直线l的距离.三、解答题(5小题,每小题10分,共计50分)1、如图,已知GH、MN分别平分∠AGE、∠DMF,且∠AGH=∠DMN,试说明ABCD的理由.2、如图,已知P,A,B三点,按下列要求完成画图和解答.(1)作直线AB;(2)连接PA,PB,用量角器测量∠APB= .(3)用刻度尺取AB中点C,连接PC;(4)过点P画PD⊥AB于点D;(5)根据图形回答:在线段PA,PB,PC,PD中,最短的是线段 的长度.理由: .3、如图,点在线段上,点、在线段上,AB//CD(1)若平分,,求的度数;解:∵AB//CD(已知), .(已知), .平分,(已知), (角平分线的定义).(2)若,求证:AE//FG.4、(1)探究:如图1,ABCDEF,试说明.(2)应用:如图2,ABCD,点在、之间,与交于点,与交于点.若,,则的大小是多少?(3)拓展:如图3,直线在直线、之间,且ABCDEF,点、分别在直线、上,点是直线上的一个动点,且不在直线上,连接、.若,则 度(请直接写出答案).5、已知:如图,,,.求证:平分. -参考答案-一、单选题1、A【解析】【分析】两条平行直线被第三条直线所截时,同位角相等;两个和为的角互为余角;两相交线的对顶角相等;从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离.【详解】(1)两条直线被第三条直线所截,同位角不一定相等,故错误;(2)两个角的和为,这两个角互为余角,故错误;(3)相等的两个角不一定是对顶角,对顶角一定相等,故错误;(4)从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,故错误;故选:A.【点睛】本题考查了同位角,余角,对顶角以及点到直线的距离.解题的关键在于正确理解各名词的定义.2、B【解析】【分析】设∠4的补角为,利用∠1=∠2求证,进而得到,最后即可求出∠4.【详解】解:设∠4的补角为,如下图所示:∠1=∠2,,,.故选:B.【点睛】本题主要是考查了平行线的性质与判定,熟练角相等,证明两直线平行,然后利用平行关系证明其他角相等,这是解决该题的关键.3、D【解析】【分析】根据垂线公理,平行线的判定,平行线的传递,平行线的性质进行判断即可.【详解】解:A、在同一平面内,过一点有且只有一条直线与已知直线垂直,这个命题为真命题;B、同旁内角互补,两直线平行,这个命题为真命题;C、如果两条直线都与第三条直线平行,那么这两条直线也互相平行,这个命题为真命题;D、过直线外一点有且只有一条直线与已知直线平行,故这个命题是假命题.故选:D.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.4、B【解析】【分析】利用三角形的性质、平行线的性质和判定进行判断即可.【详解】解:两直线平行,同旁内角互补,故A是假命题;内错角相等,两直线平行,故B是真命题;直角三角形的两锐角互余,故C是假命题;三角形的一个外角大于任何一个和它不相邻的内角,故D是假命题;故答案为B.【点睛】本题考查的是命题的真假判断,熟练准确掌握基础知识是解答本题的关键.5、D【解析】【分析】同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.【详解】解:(同位角相等,两直线平行),故A不符合题意; ∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意; (同位角相等,两直线平行)故C不符合题意; ∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,所以不能判定 故D符合题意;故选D【点睛】本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.6、D【解析】【分析】由题意直接根据∠A的两边分别垂直于∠B的两边画出符合条件的图形进行判断即可.【详解】解:BD⊥AD,CE⊥AB,如图:∵∠A=90°﹣∠ABD=∠DBC,∴∠A与∠DBC两边分别垂直,它们相等,而∠DBE=180°﹣∠DBC=180°﹣∠A,∴∠A与∠DBE两边分别垂直,它们互补,故选:D.【点睛】本题考查垂线及角的关系,解题关键是根据已知画出符合条件的图形.7、D【解析】【分析】利用互为相反数的两个数的平方也相等,有理数的大小比较,同位角和对顶角的概念性质进行分析判断即可.【详解】解:A、若,则或,故A错误.B、当时,有,故B错误.C、两直线平行,同位角相等,故C错误.D、对顶角相等,D正确.故选:D .【点睛】本题主要是考查了平方、绝对值的比较大小、同位角和对顶角的性质,熟练掌握相关概念及性质,是解决本题的关键.8、D【解析】【分析】根据同位角的定义、垂线的性质、对顶角的性质、平行公理依次判断.【详解】解:A. 同位角不一定相等,故该项不符合题意;B. 在同一平面内,如果a⊥b,b⊥c,则ac,故该项不符合题意;C. 相等的角不一定是对顶角,故该项不符合题意;D. 在同一平面内,如果ab,bc,则ac,故该项符合题意;故选:D.【点睛】此题考查了语句的判断,正确掌握同位角的定义、垂线的性质、对顶角的性质、平行公理是解题的关键.9、D【解析】【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.【详解】解:由平移的性质可知,不改变图形的形状、大小和方向,只有D选项符合要求,故选:D.【点睛】本题考查了生活中的平移现象,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.10、D【解析】【分析】根据题意画图如图(1),根据平行线性质两直线平行,同位角相等,即可得出∠α=∠1=∠β,即可得出答案,如图(2)根据平行线性质,两直线平行,同旁内角互补,∠α+∠2=180°,再根据两直线平行,内错角相等,∠2=∠β,即可得出答案.【详解】解:如图1,∵a∥b,∴∠1=∠α,∵c∥d,∴∠β=∠1=∠α=60°;如图(2),∵a∥b,∴∠α+∠2=180°,∵c∥d,∴∠2=∠β,∴∠β+∠α=180°,∵∠α=60°,∴∠β=120°.综上,∠β=60°或120°.故选:D.【点睛】本题主要考查了平行线的性质,熟练掌握相关性质进行计算是解决本题的关键.二、填空题1、##∠ABC##∠CBA【解析】【分析】根据平行线的判定定理即可得到结论.【详解】解:,.故答案为.【点睛】本题考查了平行线的判定定理,熟练掌握同旁内角互补两直线平行是解题的关键.2、 相等 ∠2【解析】略3、68【解析】【分析】根据平行线的性质,得出,根据平行线的判定,得出,即可得到,进而得到的度数.【详解】解:∵练习本的横隔线相互平行,,∵要使,∴,又,,即, 故答案为:68.【点睛】本题主要考查了平行线的性质与判定条件,解题时注意:两直线平行,同位角相等;同旁内角互补,两直线平行.4、【解析】【分析】先求出的度数,再根据角平分线的运算可得的度数,然后根据角的和差即可得.【详解】解:,,是的平分线,,,故答案为:.【点睛】本题考查了邻补角、与角平分线有关的计算,熟记角的运算法则是解题关键.5、 垂线段 点到直线的距离 AD【解析】略三、解答题1、见解析【解析】【分析】根据角平分线的意义可得∠AGE=2∠AGH,∠DMF=2∠DMN,等量代换可得∠DMF=∠FGB,根据平行线的判定定理即可求得ABCD【详解】∵GH平分∠AGE,∴∠AGE=2∠AGH同理∠DMF=2∠DMN∵∠AGH=∠DMN∴∠AGE=∠DMF又∵∠AGE=∠FGB ∴∠DMF=∠FGB ∴ABCD (同位角相等,两直线平行).【点睛】本题考查了平行线的判定定理,角平分线的意义,掌握平行线的判定定理是解题的关键.2、 (1)见解析(2)90°(3)见解析(4)见解析(5)PD,垂线段最短【解析】【分析】(1)根据直线的特点画图即可;(2)用量角器量取即可;(3)根据中点的定义解答;(4)用三角板的两条直角边画图即可;(5)根据垂线段最短解答.(1)如图,直线AB即为所求作.(2)测量可知,∠APB=90°.故答案为:90°.(3)如图,线段PC即为所求作.(4)如图,线段PD即为所求作.(5)根据垂线段最短可知,线段PD最短,故答案为:PD,垂线段最短.【点睛】本题考查了直线,射线,线段等知识,以及线段的中点,垂线的性质,解题的关键是理解题意,灵活运用所学知识解决问题.3、 (1)两直线平行,同旁内角互补,80,40(2)见解析【解析】【分析】(1)根据平行线的性质求出∠ABD=80°,再根据角平分线的定义求解即可;(2)根据平行线的性质得到∠1=∠FGC,等量代换得到∠2=∠FGC,即可判定AE//FG.(1)//(已知),,(两直线平行,同旁内角互补),,(已知),平分(已知),(角平分线的定义),故答案为:两直线平行,同旁内角互补,80,40;(2)证明://,,,,//.【点睛】此题考查了平行线的判定与性质,熟记“两直线平行,同旁内角互补”、“两直线平行,内错角相等”、“同位角相等,两直线平行”是解题的关键.4、(1)见解析;(2)60°;(3)70或290【解析】【分析】(1)由可得,,,则;(2)利用(1)中的结论可知,,则可得的度数为,由对顶角相等可得;(3)结合(1)中的结论可得,注意需要讨论是钝角或是锐角时两种情况.【详解】解:(1)如图1,,,,,.(2)由(1)中探究可知,,,且,,;(3)如图,当为钝角时,由(1)中结论可知,,;当为锐角时,如图,由(1)中结论可知,,即,综上,或.故答案为:70或290.【点睛】本题主要考查平行线的性质与判定,难度适中,观察图形,推出角之间的和差关系是解题关键.5、见解析【解析】【分析】先判定EF//AC,得到,,等量代换可得∠2=∠3,从而平分.【详解】证明:,,,,,又,∴∠3=∠A,,平分.【点睛】本题考查了平行线的判定与性质,角平分线的定义,熟练掌握平行线的判定与性质是解答本题的关键.
相关试卷
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试巩固练习,共25页。试卷主要包含了直线m外一点P它到直线的上点A等内容,欢迎下载使用。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试一课一练,共22页。试卷主要包含了下列语句正确的个数是,下列说法中不正确的是等内容,欢迎下载使用。
这是一份数学七年级下册第七章 相交线与平行线综合与测试当堂达标检测题,共21页。试卷主要包含了如图,下列条件中能判断直线的是,如图,点A等内容,欢迎下载使用。