初中数学冀教版七年级下册第七章 相交线与平行线综合与测试巩固练习
展开
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试巩固练习,共20页。试卷主要包含了下列命题中是假命题的是,下列命题中,是假命题的是,下列说法正确的是,下列说法中不正确的是等内容,欢迎下载使用。
冀教版七年级数学下册第七章相交线与平行线综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )A.40° B.36° C.44° D.100°2、如图,已知∠1=50°,要使a∥b,那么∠2等于( )A.40° B.130° C.50° D.120°3、如图,,交于点,,,则的度数是( )A.34° B.66° C.56° D.46°4、下列命题中是假命题的是( )A.两直线平行,同位角相等 B.同旁内角互补,两直线平行C.垂直于同一直线的两直线平行 D.对顶角相等5、下列命题中,是假命题的是( )A.在同一平面内,过一点有且只有一条直线与已知直线垂直B.同旁内角互补,两直线平行C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.过一点有且只有一条直线与已知直线平行6、如图,点在延长线上,下列条件中不能判定的是( )A. B. C. D.7、下列说法正确的是( )A.同位角相等B.在同一平面内,如果a⊥b,b⊥c,则a⊥cC.相等的角是对顶角D.在同一平面内,如果a∥b,b∥c,则a∥c8、在下列汽车标志的图案中,能用图形的平移来分析其形成过程的是( )A. B.C. D.9、下列说法中不正确的是( )A.平面内,垂直于同一条直线的两直线平行B.过一点有且只有一条直线与已知直线平行C.平面内,过一点有且只有一条直线与已知直线垂直D.直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离10、已知∠α的两边分别平行于∠β的两边.若∠α=60°,则∠β的大小为( )A.30° B.60° C.30°或60° D.60°或120°第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、如图,若∠1+∠2=180°,∠3=70°,则∠4=_______.2、在木条转动过程中,存在一条直线a与直线b不相交的情形,这时我们说直线a与b互相__________.记作“a__________b”.在同一平面内,不相交的两条直线叫做__________.注意:平行线的定义包含三层意思:(1)“在同一 __________”是前提条件;(2)“不相交”就是说两条直线没有__________;(3)平行线指的是“两条__________”而不是两条射线或两条线段.3、下列命题,①对顶角相等;②两直线平行,同位角相等;③平行四边形的对角相等.其中逆命题是真命题的命题共有__个.4、两条平行直线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角_________.如图,因为a∥b (已知),所以∠1+∠2=_________(两直线平行,同旁内角互补) .5、如图,∠C=90°,线段AB=10cm,线段AD=8cm,线段AC=6cm,则点A到BC的距离为_____cm.三、解答题(5小题,每小题10分,共计50分)1、如图,已知AB∥CD,AD和BC交于点O,E为OC上一点,F为CD上一点,且∠CEF+∠BOD=180°.说明∠EFC=∠A的理由.2、完成下面推理填空:已知:如图,△ABC中,点D是AB上一点,点E是AC上一点,点F是BC延长线上一点,连接CD,DE,EF,若∠1=∠F,CD∥EF,求证:∠EDB+∠ABC=180°.证明:∵CD∥EF(已知),∴∠F=∠BCD( ),∵∠1=∠F(已知),∴ = ( ),∴ ∥ ( ),∴∠EDB+∠ABC=180°( ).3、如图,已知射线AB与直线CD交于点O,OF平分∠BOC,AE∥DC,且∠A=70°,求∠DOF.4、如图,已知AB∥CD,BE平分∠ABC,DB平分∠CDF,且∠ABC+∠CDF=180°.求证:BE⊥DB.证明:∵AB∥CD∴∠ABC=∠BCD( )∵∠ABC+∠CDF=180°( )∴∠BCD+∠CDF=180°( )∴BC∥DF( )于是∠DBC=∠BDF( )∵BE平分∠ABC,DB平分∠CDF∴∠EBC=∠ABC,∠BDF= ( )∵∠EBC+∠DBC=∠EBC+∠BDF=(∠ABC+∠CDF)即∠EBD= ∴BE⊥DB( )5、如图AB∥CD,∠B=62°,EG平分∠BED,EG⊥EF,求∠CEF的度数. -参考答案-一、单选题1、A【解析】【分析】首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.【详解】∵∠1=40°,∠2=40°,∴∠1=∠2,∴PQMN,∴∠4=180°﹣∠3=40°,故选:A.【点睛】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.2、C【解析】【分析】先假设a∥b,由平行线的性质即可得出∠2的值.【详解】解:假设a∥b,∴∠1=∠2,∵∠1=50°,∴∠2=50°.故选:C.【点睛】本题考查的是平行线的判定定理,即同位角相等,两直线平行.3、C【解析】【分析】由余角的定义得出的度数,由两直线平行内错角相等即可得出结论.【详解】解:∵,,∴,∵,∴,故选:C【点睛】本题考查了平行线的性质和余角,解题的关键是灵活运用所学知识解决问题.4、C【解析】【分析】根据平行线的性质与判定,对顶角的性质,逐项分析判断即可【详解】解:A. 两直线平行,同位角相等,故该选项是真命题,不符合题意; B. 同旁内角互补,两直线平行,故该选项是真命题,不符合题意;C. 同一平面内,垂直于同一直线的两直线平行,故该选项是假命题,符合题意; D. 对顶角相等,故该选项是真命题,不符合题意;故选C【点睛】本题考查了真假命题的判断,掌握平行线的性质与判定,对顶角的性质是解题的关键.5、D【解析】【分析】根据垂线公理,平行线的判定,平行线的传递,平行线的性质进行判断即可.【详解】解:A、在同一平面内,过一点有且只有一条直线与已知直线垂直,这个命题为真命题;B、同旁内角互补,两直线平行,这个命题为真命题;C、如果两条直线都与第三条直线平行,那么这两条直线也互相平行,这个命题为真命题;D、过直线外一点有且只有一条直线与已知直线平行,故这个命题是假命题.故选:D.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6、A【解析】【分析】根据平行线的判定方法直接判定即可.【详解】解:选项B中,,(内错角相等,两直线平行),所以正确;选项C中,,(内错角相等,两直线平行),所以正确;选项D中,,(同旁内角互补,两直线平行),所以正确;而选项A中,与是直线、被所截形成的内错角,因为,所以应是,故A错误.故选:A.【点睛】本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.7、D【解析】【分析】根据同位角的定义、垂线的性质、对顶角的性质、平行公理依次判断.【详解】解:A. 同位角不一定相等,故该项不符合题意;B. 在同一平面内,如果a⊥b,b⊥c,则ac,故该项不符合题意;C. 相等的角不一定是对顶角,故该项不符合题意;D. 在同一平面内,如果ab,bc,则ac,故该项符合题意;故选:D.【点睛】此题考查了语句的判断,正确掌握同位角的定义、垂线的性质、对顶角的性质、平行公理是解题的关键.8、C【解析】【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.【详解】解:A.不是由“基本图案”经过平移得到,故此选项不合题意;B.不是由“基本图案”经过平移得到,故此选项不合题意;C.是由“基本图案”经过平移得到,故此选项符合题意;D.不是由“基本图案”经过平移得到,故此选项不合题意;故选:C.【点睛】本题主要考查了图形的平移,在平面内,把一个图形整体沿某一的方向移动,学生混淆图形的平移与旋转或翻转,而误选.9、B【解析】【分析】根据点到直线的距离、垂直的性质及平行线的判定等知识即可判断.【详解】A、平面内,垂直于同一条直线的两直线平行,故说法正确;B.过直线外一点有且只有一条直线与已知直线平行,故说法错误;C.平面内,过一点有且只有一条直线与已知直线垂直,此说法正确;D.直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离,这是点到直线的距离的定义,故此说法正确.故选:B【点睛】本题主要考查了垂直的性质、点到直线的距离、平行线的判定等知识,理解这些知识是关键.但要注意:平面内,垂直于同一条直线的两直线平行;平面内,过一点有且只有一条直线与已知直线垂直;这两个性质的前提是平面内,否则不成立.10、D【解析】【分析】根据题意画图如图(1),根据平行线性质两直线平行,同位角相等,即可得出∠α=∠1=∠β,即可得出答案,如图(2)根据平行线性质,两直线平行,同旁内角互补,∠α+∠2=180°,再根据两直线平行,内错角相等,∠2=∠β,即可得出答案.【详解】解:如图1,∵a∥b,∴∠1=∠α,∵c∥d,∴∠β=∠1=∠α=60°;如图(2),∵a∥b,∴∠α+∠2=180°,∵c∥d,∴∠2=∠β,∴∠β+∠α=180°,∵∠α=60°,∴∠β=120°.综上,∠β=60°或120°.故选:D.【点睛】本题主要考查了平行线的性质,熟练掌握相关性质进行计算是解决本题的关键.二、填空题1、【解析】【分析】如图(见解析),先根据平行线的判定可得,再根据平行线的性质可得,然后根据邻补角的定义即可得.【详解】解:如图,,,,,,故答案为:.【点睛】本题考查了平行线的判定与性质、邻补角,熟练掌握平行线的判定与性质是解题关键.2、 平行 ∥ 平行线 平面内 交点 直线【解析】略3、【解析】【分析】先根据互逆命题写出三个命题的逆命题,然后分别根据对顶角的定义、平行四边形的判定定理和平行线的判定定理进行判断.【详解】解:对顶角相等的逆命题为相等的角为对顶角,此逆命题为假命题;两直线平行,同位角相等的逆命题为同位角相等,两直线平行,此逆命题为真命题;平行四边形的对角相等的逆命题为对角相等的四边形是平行四边形,此逆命题为假命题.故答案为:1.【点睛】本题考查了命题与命题:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.4、 互补 180°【解析】略5、6【解析】【分析】根据点到直线的距离的定义,可得答案.【详解】解:因为∠C=90°,所以AC⊥BC,所以A到BC的距离是AC,因为线段AC=6cm,所以点A到BC的距离为6cm.故答案为:6.【点睛】本题考查了点到直线的距离,明确定义是关键.三、解答题1、见解析【解析】【分析】由AB∥DC可得到∠A与∠D的关系,再由∠CEF+∠BOD=180°可得到∠CEF=∠COD,根据平行线的判定定理可得EF∥AD,可得∠D与∠EFC的关系,等量代换可得结论.【详解】证明:∵AB∥CD,∴∠A=∠D,∵∠CEF+∠BOD=180°,∠BOD+∠DOC=180°,∴∠CEF=∠DOC.∴EF∥AD.∴∠EFC=∠D,∵∠A=∠D,∴∠EFC=∠A.【点睛】本题考查了平行线的判定和性质,掌握平行线的性质和判定方法是解决本题的关键.2、两直线平行,同位角相等;∠1,∠BCD,等量代换;DE,BC,内错角相等,两直线平行;两直线平行,同旁内角互补【解析】【分析】根据平行线的判定与性质进行填空即可的得出答案.【详解】证明:∵CD∥EF(已知),∴∠F=∠DCD(两直线平行,同位角相等),∵∠1=∠F(已知),∴∠1=∠BCD(等量代换),∴DE∥BC(内错角相等,两直线平行),∴∠EDB+∠ABC=180°(两直线平行,同旁内角互补).故答案为:两直线平行,同位角相等;∠1,∠BCD,等量代换;DE,BC,内错角相等,两直线平行;两直线平行,同旁内角互补.【点睛】本题考查平行线的判定与性质,熟知平行线的判定与性质是解答的关键.3、145°【解析】【分析】根据平行线的性质,两直线平行,同位角相等可得∠A=∠BOC=70°,由角平分线的性质可得∠BOF=∠FOC=35°,再根据平角的性质即可得出答案.【详解】解:∵AE∥DC,∴∠A=∠BOC=70°,又∵OF平分∠BOC,∴∠BOF=∠FOC=35°,∴∠DOF=180°-∠FOC=180°-35°=145°.【点睛】本题主要考查了平行线的性质、邻补角的概念等,熟练应用平行线的性质进行求解是解决本题的关键.4、两直线平行,内错角相等;已知;等量代换;同旁内角相等,两直线平行;两直线平行,内错角相等;∠CDF,角平分线定义;90°;垂直的定义.【解析】【分析】结合条件与图形,读懂每一步推理及推理的依据,即可完成解答.【详解】∵AB∥CD,∴∠ABC=∠BCD(两直线平行,内错角相等),∵∠ABC+∠CDF=180°(已知),∴∠BCD+∠CDF=180°(等量代换),∴BC∥DF(同旁内角互补,两直线平行),于是∠DBC=∠BDF(两直线平行,内错角相等),∵BE平分∠ABC,DB平分∠CDF,∴∠EBC=∠ABC,∠BDF=∠CDF(角平分线定义),∵∠EBC+∠DBC=∠EBC+∠BDF=(∠ABC+∠CDF),即∠EBD=90°,∴BE⊥DB(垂直的定义).故答案分别为;两直线平行,内错角相等;已知;等量代换;同旁内角相等,两直线平行;两直线平行,内错角相等;∠CDF,角平分线定义;90°;垂直的定义【点睛】本题考查了平行线的判定与性质,角平分线的定义及垂直的定义等知识,根据题意读懂每步推理,弄清每步推理的依据是完成本题的关键.5、59°【解析】【分析】求出∠DEG,证明∠DEG+∠CEF=90°即可解决问题.【详解】解:∵AB∥CD,∠B=62°,∴∠BED=∠B=62°,∵EG平分∠BED,∴∠DEG=∠BED=31°,∵EG⊥EF,∴∠FEG=90°,∴∠DEG+∠CEF=90°,∴∠CEF=90°﹣∠DEG=90°﹣31°=59°.【点睛】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
相关试卷
这是一份数学七年级下册第七章 相交线与平行线综合与测试测试题,共25页。试卷主要包含了如图,直线b,下列命题不正确的是等内容,欢迎下载使用。
这是一份初中数学第七章 相交线与平行线综合与测试随堂练习题,共22页。试卷主要包含了如图所示,直线l1∥l2,点A,如图,点P是直线m外一点,A,直线,下列A等内容,欢迎下载使用。
这是一份初中数学第七章 相交线与平行线综合与测试课时作业,共24页。试卷主要包含了下列说法正确的有,如图,直线a,如图,下列条件中不能判定的是,如图,不能推出a∥b的条件是等内容,欢迎下载使用。