初中数学冀教版七年级下册第六章 二元一次方程组综合与测试达标测试
展开
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试达标测试,共18页。试卷主要包含了二元一次方程的解可以是,学校计划用200元钱购买等内容,欢迎下载使用。
冀教版七年级下册第六章二元一次方程组专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、已知是二元一次方程组的解,则m+n的值为( )A. B.5 C. D.2、方程x+y=6的正整数解有( )A.5个 B.6个 C.7个 D.无数个3、若为都是方程ax+by=1的解,则a+b的值是( )A.0 B.1 C.2 D.34、下列各组数中,是二元一次方程组的解的是( )A. B. C. D.5、某宾馆准备正好用200元购买价格分别为50元和25元的两种换气扇(两种都要买),则可供宾馆选择的方案有( )A.3种 B.4种 C.5种 D.6种6、某商场按定价销售某种商品时,每件可获利45元;按定价的8.5折销售该商品8件与将定价降低35元销售该商品12件所获利润相等.该商品的进价、定价分别是( )A.95元,180元 B.155元,200元 C.100元,120元 D.150元,125元7、二元一次方程的解可以是( )A. B. C. D.8、学校计划用200元钱购买、两种奖品(两种都要买),种每个15元,种每个25元,在钱全部用完的情况下,有多少种购买方案( )A.2种 B.3种 C.4种 D.5种9、中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘.问有多少人,多少辆车?设共有人,辆车,可列方程组为( )A. B. C. D.10、已知x,y满足,则x-y的值为( )A.3 B.-3 C.5 D.0第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、二元一次方程组中有两个未知数,如果消去其中的一个未知数,那么就把二元一次方程组转化成____________方程了,于是可以求出其中的一个未知数,然后再求另一个未知数.这种将未知数的个数由多转化少、逐一解决的想法,叫做____________思想.2、加减消元法:当二元一次方程的两个方程中,同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,从而求得方程组的解,这种解方程组的方法叫做_______,简称_______.加减消元法的条件:同一未知数的系数_______或_______.3、火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食,外卖,摆摊三种方式的营业额之比为3:5:2,随着促销消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的,则摆摊营业额将达到7月份总营业额的,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是_____.4、已知是二元一次方程的一个解,那么_______.5、关于x、y二元一次方程组的解满足,则k的值为______.三、解答题(5小题,每小题10分,共计50分)1、解方程组:2、甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动,甲公司人均捐款120元,乙公司人均捐款100元.如图是甲、乙两公司员工的一段对话.(1)甲、乙两公司各有多少人?(2)现甲、乙两公司共同使用这笔捐款购买、两种防疫物资,种防疫物资每箱1500元,种防疫物资每箱1200元.若购买种防疫物资不少于20箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A、B两种防疫物资均需购买,并按整箱配送).3、用适当的方法解下列方程组.4、解方程组:.5、解方程组:(1);(2). -参考答案-一、单选题1、B【解析】【分析】根据方程组解的定义,方程组的解适合方程组中的每个方程,转化为关于m、n的方程组即可解决问题.【详解】解:∵是二元一次方程组的解,∴,解得,∴m+n=5.故选:B.【点睛】本题考查二元一次方程组的解,理解方程组解的定义是解决问题的关键.2、A【解析】【分析】根据题意求二元一次方程的特殊解,根据解为正整数,分别令进而求得对应的值即可【详解】解:方程的正整数解有,,,,共5个,故选:A.【点睛】本题考查了求二元一次方程的特殊解,理解解为正整数是解题的关键.3、C【解析】【分析】把为代入ax+by=1,建立方程组,再解方程组即可.【详解】解: 为都是方程ax+by=1的解, 解②得: 把代入①得: 故选C【点睛】本题考查的是二元一次方程的解,二元一次方程组的解法,掌握“利用方程的解建立新的二元一次方程”是解本题的关键.4、B【解析】【分析】由题意直接利用加减消元法求出二元一次方程组的解即可得出答案.【详解】解:,得③,得④,③+④得,解得,将代入②得,解得,所以是二元一次方程组的解.故选:B.【点睛】本题考查解二元一次方程组,注意消元思想的运用,消元的方法有:代入消元法与加减消元法.5、A【解析】【分析】设购买50元和25元的两种换气扇的数量分别为x,y,然后根据用200元购买价格分别为50元和25元的两种换气扇,列出方程求解即可.【详解】解:设购买50元和25元的两种换气扇的数量分别为x,y由题意得:,即,∵x、y都是正整数,∴当x=1时,y=6,当x=2时,y=4,当x=3时,y=2,∴一共有3种方案,故选A.【点睛】本题主要考查了二元一次方程的应用,解题的关键在于能够准确理解题意,列出方程求解.6、B【解析】【分析】设每件商品标价x元,进价y元,则根据题意表示出销售8件和销售12件的利润,进而得出等式,求出方程组的解即可.【详解】解:设每件商品标价x元,进价y元则根据题意得:,解得:,答:该商品每件进价155元,标价每件200元.故选:B.【点睛】本题考查了二元一次方程的应用,找出正确等量关系是解题关键.7、A【解析】【分析】把各个选项答案带进去验证是否成立即可得出答案.【详解】解:A、代入中,方程左边 ,边等于右边,故此选项符合题意;B、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;C、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;D、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;故选A.【点睛】本题主要考查二元一次方程的解的定义,熟知定义是解题的关键:使二元一次方程两边相等的一组未知数的值,叫做二元一次方程的一组解.8、A【解析】【分析】设购买了A种奖品x个,B种奖品y个,根据学校计划用200元钱购买A、B两种奖品,其中A种每个15元,B种每个25元,钱全部用完可列出方程,再根据x,y为非负整数求出解即可得.【详解】解:设购买了A种奖品x个,B种奖品y个,根据题意得:,化简整理得:,得,∵x,y为非负整数,∴,,,∴购买方案为:方案1:购买了A种奖品0个,B种奖品8个;方案2:购买了A种奖品5个,B种奖品5个;方案3:购买了A种奖品10个,B种奖品2个;∵两种奖品都要买,∴方案1不符合题意,舍去,综上可得:有两种购买方案.故选:A.【点睛】本题考查了二元一次方程的应用,根据题意列出二元一次方程,然后根据解为非负整数确定未知数的值是解题关键.9、C【解析】【分析】根据题意,找到关于x、y的两组等式关系,即可列出对应的二元一次方程组.【详解】解:由每三人共乘一车,最终剩余2辆车可得:.由每2人共乘一车,最终剩余9个人无车可乘可得:.该二元一次方程组为:.故选:C.【点睛】本题主要是考查了列二元一次方程组,熟练根据题意找到等式关系,这是求解该题的关键.10、A【解析】【分析】用第二个方程减去第一个方程即可解答.【详解】解:∵∴3x-4y-(2x-3y)=8-5x-y=3.故选A.【点睛】本题主要考查了解二元一次方程组以及求代数式的值,掌握整体法成为解答本题的关键.二、填空题1、 一元一次 消元【解析】略2、 加减消元法 加减法 相等 互为相反数【解析】略3、故答案为: 【点睛】本题考查了二元一次方程的解、解一元一次方程,掌握理解二元一次方程的解的概念(一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解)是解题关键.2.1:8【解析】【分析】设6月份堂食、外卖,摆摊三种方式的营业额为3a,5a,2a,设7月份总的增加营业额为5x,摆摊增加的营业额为2x,7月份总营业额20b,摆摊7月份的营业额为7b,堂食7月份的营业额为8b,外卖7月份的营业额为5b,根据题意,列出方程组,即可.【详解】设6月份堂食、外卖,摆摊三种方式的营业额为3a,5a,2a,设7月份总的增加营业额为5x,摆摊增加的营业额为2x,7月份总营业额20b,摆摊7月份的营业额为7b,堂食7月份的营业额为8b,外卖7月份的营业额为5b,由题意可得:,解得:∴7月份外卖还需增加的营业额与7月份总营业额之比=(5b﹣5a):20b=1:8,故答案为:1:8.【点睛】本题主要考查三元一次方程组的实际应用,准确找出等量关系,列出方程组是解题的关键.4、##【解析】【分析】把代入,即可求出a的值.【详解】解:由题意可得:,,解得:,故答案为:.【点睛】本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.5、8【解析】【分析】转化方程组,求得解后,代入求值即可.【详解】∵,解得,∴,∴k=8,故答案为:8.【点睛】本题考查了二元一次方程组的解法,熟练构造新方程组是解题的关键.三、解答题1、【解析】【分析】用加减消元法解方程即可.【详解】解:,①×2+②,可得5x=15,解得x=3,把x=3代入①,解得y=﹣1,∴原方程组的解是.【点睛】本题考查了二元一次方程组的解法,解题关键是熟练掌握加减消元法的步骤,正确进行消元,解方程.2、 (1)甲公司150人,乙公司180人(2)共有两种方案,①种物资购买8箱,种物资购买20箱;②种物资购买4箱,种物资购买25箱【解析】【分析】(1)设甲公司人,乙公司人,根据题意列出二元一次方程组,求解即可;(2)设种物资购买箱,种物资购买箱,根据题意列出二元一次方程,求出整数解即可.(1)解:设甲公司人,乙公司人,根据题意得:,解得:,答:甲公司150人,乙公司180人;(2)设种物资购买箱,种物资购买箱,由题意得:,整理得:,,且、是正整数,当时,;当时,;答:共有两种方案,①种物资购买8箱,种物资购买20箱;②种物资购买4箱,种物资购买25箱.【点睛】本题考查了二元一次方程组的应用,解题关键是理清题意,正确找到等量关系,列出二元一次方程组.3、【解析】【分析】将代入消元求解的值,进而求出的值.【详解】解:由①得,③将③代入②得,解得把代入③,得∴方程组的解为.【点睛】本题考查了解二元一次方程组.解题的关键在于将二元一次方程组转化成一元一次方程.4、【解析】【详解】解:,用②①,得:,解得:,将代入①,得:,解得:,方程组的解为.【点睛】此题考查了解二元一次方程组,正确掌握解方程组的方法:代入法和加减法并应用解决问题是解题的关键.5、 (1)(2)【解析】【分析】(1)②﹣①得出4y=12,求出y,再把y=3代入②求出x即可;(2)整理后①+②得出6x=12,求出x,再把x=2代入①求出y即可.(1),②﹣①,得4y=12,解得:y=3,把y=3代入②,得x+3=15,解得:x=12,所以方程组的解是;(2),原方程组化为:,①+②,得6x=12,解得:x=2,把x=2代入①,得6+2y=4,解得:y=﹣1,所以方程组的解是.【点睛】本题考查解二元一次方程组,解题的关键是消元,常用消元的方法有代入消元法和加减消元法.
相关试卷
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试课后作业题,共20页。试卷主要包含了若关于x,下列方程中,①x+y=6;②x等内容,欢迎下载使用。
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试习题,共19页。试卷主要包含了若是方程组的解,则的值为等内容,欢迎下载使用。
这是一份数学七年级下册第六章 二元一次方程组综合与测试精练,共20页。试卷主要包含了《孙子算经》记载,在一次爱心捐助活动中,八年级等内容,欢迎下载使用。