![2022年最新精品解析冀教版七年级下册第六章二元一次方程组综合测试练习题第1页](http://img-preview.51jiaoxi.com/2/3/12717159/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版七年级下册第六章二元一次方程组综合测试练习题第2页](http://img-preview.51jiaoxi.com/2/3/12717159/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版七年级下册第六章二元一次方程组综合测试练习题第3页](http://img-preview.51jiaoxi.com/2/3/12717159/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版七年级下册第六章 二元一次方程组综合与测试当堂达标检测题
展开
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试当堂达标检测题,共18页。试卷主要包含了如图,9个大小,二元一次方程组的解是,用代入消元法解关于等内容,欢迎下载使用。
冀教版七年级下册第六章二元一次方程组综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、学校计划用200元钱购买、两种奖品(两种都要买),种每个15元,种每个25元,在钱全部用完的情况下,有多少种购买方案( )A.2种 B.3种 C.4种 D.5种2、已知,则( )A. B. C. D.3、若关于x,y的二元一次方程组的解,也是二元一次方程x+2y=﹣1的解,则a的值为( )A.2 B.1 C. D.04、《孙子算经》是中国古代最重要的数学著作,其中记载:“今有木,不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺.木长几何?”译文:“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问木长多少尺?”设绳子长x尺,木长y尺,可列方程组为( ).A. B.C. D.5、下列方程组中,属于二元一次方程组的是( )A. B.C. D.6、如图,9个大小、形状完全相同的小长方形,组成了一个周长为46的大长方形,若设小长方形的长为,宽为,则可列方程为( )A. B.C. D.7、二元一次方程组的解是( )A. B. C. D.8、用代入消元法解关于、的方程组时,代入正确的是( )A. B.C. D.9、某污水处理厂库池里现有待处理的污水m吨.另有从城区流入库池的待处理污水(新流入污水按每小时n吨的定流量增加).若该厂同时开动2台机组,需30小时处理完污水;若同时开动3台机组,需15小时处理完污水.若5小时处理完污水,则需同时开动的机组数为( )A.6台 B.7台 C.8台 D.9台10、下列方程中,属于二元一次方程的是( )A.xy﹣3=1 B.4x﹣2y=3 C.x+=4 D.x2﹣4y=1第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、已知5xm﹣2﹣y2n+5=0是关于x、y的二元一次方程,则m﹣n=___.2、已知x、y满足方程组,则的值为__________.3、在二元一次方程3x+y=12的解中,x和y是相反数的解是_______.4、如果将方程变形为用含的式子表示,那么_______.5、使二元一次方程两边____的两个未知数的值,叫二元一次方程的一组解.三、解答题(5小题,每小题10分,共计50分)1、解方程组:2、为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,下表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分:(水价计费=自来水销售费用+污水处理费用)自来水销售价格污水处理价格(单价:元/吨)每户每月用水量(单价:元/吨)17吨及以下a0.80超过17吨不超过30吨的部分b0.80超过30吨的部分6.000.80已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a,b的值.(2)6月份小王家用水32吨,应交水费多少元.(3)若林芳家7月份缴水费303元,她家用水多少吨?3、已知方程(k+2)x+(k-6)y=k+8是关于x,y的方程.(1)k为何值时,方程为一元一次方程?(2)k为何值时,方程为二元一次方程?4、两种酒精,甲种含水15%,乙种含水5%,现在要配成含水12%的酒精500克.每种酒精各需多少?5、用适当的方法解下列方程组. -参考答案-一、单选题1、A【解析】【分析】设购买了A种奖品x个,B种奖品y个,根据学校计划用200元钱购买A、B两种奖品,其中A种每个15元,B种每个25元,钱全部用完可列出方程,再根据x,y为非负整数求出解即可得.【详解】解:设购买了A种奖品x个,B种奖品y个,根据题意得:,化简整理得:,得,∵x,y为非负整数,∴,,,∴购买方案为:方案1:购买了A种奖品0个,B种奖品8个;方案2:购买了A种奖品5个,B种奖品5个;方案3:购买了A种奖品10个,B种奖品2个;∵两种奖品都要买,∴方案1不符合题意,舍去,综上可得:有两种购买方案.故选:A.【点睛】本题考查了二元一次方程的应用,根据题意列出二元一次方程,然后根据解为非负整数确定未知数的值是解题关键.2、B【解析】【分析】根据二元一次方程组的解法以及非负数的性质即可求出答案.【详解】解:由题意可知: 解得: ,故选:B.【点睛】本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.3、D【解析】【分析】解方程组,用a表示x,y,把x,y代入x+2y=﹣1中得到关于a的方程,解方程即可.【详解】解:,①+②得2x=2a+6,x=a+3,把代入①,得a+3+y=-a+1,y=-2a-2,∵x+2y=﹣1∴a+3+2(-2a-2)=-1,∴a=0,故选D.【点睛】本题考查了解二元一次方程组以及二元一次方程的解,解方程组,用a表示x,y,把x,y代入x+2y=﹣1中得到关于a的方程是解题的关键.4、B【解析】【分析】设绳子长x尺,长木长y尺,根据“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺”,可得出关于x,y的二元一次方程组.【详解】解:设绳子长x尺,长木长y尺,依题意,得:,故选:B.【点睛】本题考查了二元一次方程组的应用以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.5、C【解析】【分析】根据二元一次方程组的基本形式及特点进行判断,即①含有两个二元一次方程,②方程都为整式方程,③未知数的最高次数都为一次.【详解】解:A、该方程组中的第二个方程的最高次数为2,不是二元一次方程组,故本选项不符合题意;B、该方程组的第一个方程不是整式方程,不是二元一次方程组,故本选项不符合题意;C、该方程组符合二元一次方程组的定义,故本选项符合题意;D、该方程组中含有3个未知数,不是二元一次方程组,故本选项不符合题意;故选:C.【点睛】本题主要考查二元一次方程组的判定,解题的关键是熟练掌握二元一次方程组的基本形式及特点.6、A【解析】【分析】根据图形可知,大长方形的长=7个小长方形的宽=2小长方形的长,大长方形的宽=小长方形的长+小长方形的宽,由此即可列出方程.【详解】解:设小长方形的长为x,宽为y,由题意得: 或,故选A.【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够正确理解题意和掌握长方形周长公式.7、C【解析】【分析】根据加减消元法,由①+②得出11x=33,求出x,再把x=3代入①求出y即可.【详解】解:,由①+②,得11x=33,解得:x=3,把x=3代入①,得9+2y=13,解得:y=2,所以方程组的解是,故选:C.【点睛】本题考查了解二元一次方程组,解题的关键是掌握加减消元法解方程组.8、A【解析】【分析】利用代入消元法把①代入②,即可求解.【详解】解:,把①代入②,得:.故选:A【点睛】本题主要考查了解二元一次方程组,解题的关键是熟练掌握二元一次方程组数为解法——代入消元法和加减消元法.9、B【解析】【分析】设同时开动x台机组,每台机组每小时处理a吨污水,根据“如果同时开动2台机组要30小时刚好处理完污水,同时开动3台机组要15小时刚好处理完污水”,即可得出关于m,n的二元一次方程组,解之即可得出m,n的值(用含a的代数式表示),再由5小时内将污水处理完毕,即可得出关于关于x的一元一次方程,解之可得出结论.【详解】解:设同时开动x台机组,每台机组每小时处理a吨污水,依题意,得,解得:,∵5ax=30a+5a,∴x=7.答:要同时开动7台机组.故选:B.【点睛】本题考查的是用二元一次方程组来解决实际问题,正确的理解题意是解题的关键.10、B【解析】【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【详解】解:A、xy-3=1,是二元二次方程,故本选项不合题意;B、4x-2y=3,属于二元一次方程,故本选项符合题意;C、x+=4,是分式方程,故本选项不合题意;D、x2-4y=1,是二元二次方程,故本选项不合题意;故选:B.【点睛】此题主要考查了二元一次方程的定义,关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.二、填空题1、5【解析】【分析】根据二元一次方程的定义(如果一个方程含有两个未知数,并且所含未知项的次数都为1次,那么这个整式方程就叫做二元一次方程)列出方程求解可得,n﹣2,然后代入代数式求值即可得.【详解】解:由题意得:,,解得:,,,故答案为:5.【点睛】题目主要考查二元一次方程的定义及求代数式的值,深刻理解二元一次方程的定义是解题关键.2、1【解析】【分析】利用整体思想直接用方程①-②即可得结果.【详解】解:,①-②得,4x+4y=4,x+y=1,故答案为:1.【点睛】本题考查了二元一次方程组的解,解二元一次方程组,解决本题的关键是掌握整体思想.3、【解析】【分析】根据x和y是相反数可得x=﹣y,然后代入原方程求解即可.【详解】解:∵x和y是相反数,∴x=﹣y,把x=﹣y代入原方程中,可得:﹣3y+y=12,解得:y=﹣6,∴x=6,∴在二元一次方程3x+y=12的解中,x和y是相反数的解是,故答案为:.【点睛】本题考查二元一次方程的解,理解方程的解和互为相反数的概念是解题关键.4、【解析】【分析】先移项,再系数化为1即可.【详解】解:移项,得:,方程两边同时除以,得:,故答案为:.【点睛】本题考查了解二元一次方程,将x看作常数,把y看做未知数,灵活应用等式的性质求解是关键.5、相等【解析】略三、解答题1、【解析】【分析】原方程组化简后用代入消元法求解.【详解】解:原方程组化简,得,②×5+①,得7x=-7,∴x=-1,把x=-1代入②,得-1+y=2,∴y=3,∴.【点睛】本题考查了二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键.2、 (1)(2)129.6元(3)57.5吨【解析】【分析】(1)根据“4月份用水20吨,交水费66元;5月份用水25吨,交水费91元”,列出方程组,即可求解;(2)用(30-17)×4.2加上17×2.2再加上超过30吨的部分的污水处理的费用再加上自来水销售费用,即可求解;(3)由(2)知,用水32吨需交水费129.6元,因为303>129.6,所以林芳家7月份用水量超过30吨,然后设林芳家七月份用水x吨,根据题意列出方程,即可求解.(1)解:(1)由题意得: ,解得 ;(2)(2)(30-17)×4.2+17×2.2+(32-30)×6+32×0.8=129.6(元). 答:当月交水费129.6元;(3)(3)由(2)知,用水32吨需交水费129.6元,因为303>129.6,所以林芳家7月份用水量超过30吨,设林芳家七月份用水x吨,则(30-17)×4.2+17×2.2+(x-30)×6+x×0.8=303(元),6.8x=391,解得:x=57.5,即七月份林芳家用水57.5吨.【点睛】本题主要考查了二元一次方程组和一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.3、 (1)k=-2或k=6;(2)k≠-2且k≠6时【解析】【分析】(1)根据一元次方程的定义,含有一个未知数,并且含未知数的项的次数为1的整式方程可得或 ,解方程组得;(2)根据方程是二元一次方程方程的定义含有两个未知数,含未知数的项的次数为1的整式方程可得,解不等式组即可.【小题1】解:∵方程是一元一次方程,∴或 ∴解得k=-2或k=6.∴当k=-2或k=6时,该方程是一元一次方程.【小题2】解:∵方程是二元一次方程,∴∴解得k≠-2且k≠6.∴当k≠-2且k≠6时,该方程是二元一次方程.【点睛】本题考查一元一次方程的定义,二元一次方程方程的定义,掌握一元一次方程的定义,二元一次方程方程的定义是解题关键.4、甲种酒精取350克,乙种酒精取150克【解析】【详解】解:设甲种酒精取x克,乙种酒精取y克。依题意,得解此方程组,得答:甲种酒精取350克,乙种酒精取150克。5、【解析】【分析】将代入消元求解的值,进而求出的值.【详解】解:由①得,③将③代入②得,解得把代入③,得∴方程组的解为.【点睛】本题考查了解二元一次方程组.解题的关键在于将二元一次方程组转化成一元一次方程.
相关试卷
这是一份数学七年级下册第六章 二元一次方程组综合与测试习题,共20页。试卷主要包含了有下列方程等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试随堂练习题,共16页。试卷主要包含了下列方程组中,二元一次方程组有,方程x+y=6的正整数解有等内容,欢迎下载使用。
这是一份初中数学第六章 二元一次方程组综合与测试单元测试课后作业题,共19页。试卷主要包含了已知是方程的解,则k的值为,某学校体育有场的环形跑道长,甲等内容,欢迎下载使用。