![2021-2022学年冀教版七年级下册第六章二元一次方程组综合测试试题(含详解)第1页](http://img-preview.51jiaoxi.com/2/3/12716661/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版七年级下册第六章二元一次方程组综合测试试题(含详解)第2页](http://img-preview.51jiaoxi.com/2/3/12716661/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版七年级下册第六章二元一次方程组综合测试试题(含详解)第3页](http://img-preview.51jiaoxi.com/2/3/12716661/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版七年级下册第六章 二元一次方程组综合与测试同步达标检测题
展开
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试同步达标检测题,共21页。试卷主要包含了如图,9个大小,下列方程组中,二元一次方程组有等内容,欢迎下载使用。
冀教版七年级下册第六章二元一次方程组综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、已知x=2,y=﹣1是方程ax+y=3的一组解,则a的值为( )A.2 B.1 C.﹣1 D.﹣22、下列各组数值是二元一次方程的解是( )A. B. C. D.3、下列方程组中,属于二元一次方程组的是( )A. B.C. D.4、如图,9个大小、形状完全相同的小长方形,组成了一个周长为46的大长方形,若设小长方形的长为,宽为,则可列方程为( )A. B.C. D.5、我校在举办“书香文化节”的活动中,将x本图书分给了y名学生,若每人分6本,则剩余40本;若每人分8本,则还缺50本,下列方程正确的是( )A. B. C. D.6、关于x,y的二元一次方程组的解为正整数,则满足条件的所有整数a的和为( )A.1 B.﹣1 C.2 D.﹣37、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大45,这样的两位数共有( )A.2个 B.3个 C.4个 D.5个8、下列方程组中,二元一次方程组有( )①;②;③;④.A.4个 B.3个 C.2个 D.1个9、已知x=3,y=-2是方程2x+my=8的一个解,那么m的值是( )A.-1 B.1 C.-2 D.210、已知是二元一次方程组的解,则m+n的值为( )A. B.5 C. D.第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.如果一个二元一次方程的解中两个未知数的绝对值相等,那么我们把这个解称做这个二元一次方程的等模解.二元一次方程2x﹣5y=7的等模解是____.2、若关于x、y 的二元一次方程组的解满足x+y=1,则m的值为__________.3、我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”这首诗的意思是说:“如果一间客房住七个人,那么就剩下七个人安排不下;如果一间客房住九个人,那么就空出一间客房.”问,现有客房多少间?房客多少人?设现有客房x间,房客y人,请你列出二元一次方程组:_____.4、凤鸣文具厂生产的一种文具套装深受学生喜爱,已知该文具套装一套包含有1个笔袋,2只笔,3个笔记本,某文具超市向该厂订购了一批文具套装,需要厂家在15天内生产完该套装并交货.凤鸣文具厂将员工分为A、B、C三个组,分别生产笔袋、笔、笔记本,他们于某天零点开始工作,每天24小时轮班连续工作(假设每小时工作效率相同),若干天后的零点A组完成任务,再过几天后(不少于一天)的中午12点B组完成任务,再过几天(不少于一天)后的早晨6时C组完成任务.已知A、B、C三个组每天完成的任务数分别是270个、360个、360个,则该文具超市至少一共订购了 _____套文具套装.5、2x-y=3用含x的式子表示y,得____________;用含y的式子表示x,得____________.三、解答题(5小题,每小题10分,共计50分)1、解方程组:(1)(2)2、对任意一个三位数(,,,a,b,c为整数),如果其个位上的数字与百位上的数字之和等于十位数上的数字,则称M为“万象数”,现将“万象数”M的个位作为十位,十位作为百位,百位作为个位,得到一个数N,并规定,我们称新数为M的“格致数”.例如154是一个“万象数”,将其个位作为十位,十位作为百位,百位作为个位,得到一个,,所以154的“格致数”为387.(1)填空:当时,______;当时,______;(2)求证:对任意的“万象数”M,其“格致数”都能被9整除;(3)已知某“万象数”M的“格致数”为,既是72的倍数又是完全平方数,求出所有满足条件的“万象数”M.(完全平方数:如,,,,……,我们称0、1、4、9、16……叫完全平方数)3、对于任意一个四位数,若千位上的数字与百位上的数字之和是十位上的数字与个位上的数字之和的2倍,则称是“2倍和数”.如,因为,所以3504是“2倍和数”;,因为,所以6824不是“2倍和数”.(1)判断6423,4816是否为“2倍和数”?并说明理由;(2)对于“2倍和数”,当百位上的数字是个位上的数字的3倍,且各数位上的数字之和能被9整除时,记.求的最大值和最小值.4、解方程组:(1)(2)5、解方程组: -参考答案-一、单选题1、A【解析】【分析】把x=2,y=﹣1代入方程ax+y=3中,得到2a-1=3,解方程即可.【详解】∵x=2,y=﹣1是方程ax+y=3的一组解,∴2a-1=3,解得a=2,故选A.【点睛】本题考查了二元一次方程的解即使方程两边相等的一组未知数的值,一元一次方程的解法,正确理解定义,规范解一元一次方程是解题的关键.2、D【解析】【分析】将选项中的解分别代入方程,使方程成立的即为所求.【详解】解:A.代入方程,,不满足题意;B.代入方程,,不满足题意;C.代入方程,,不满足题意;D.代入方程,,满足题意;故选:D.【点睛】本题考查了二元一次方程的解,熟练掌握二元一次方程的解与二元一次方程的关系是解题的关键.3、C【解析】【分析】根据二元一次方程组的基本形式及特点进行判断,即:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.【详解】解:、该方程组中含有3个未知数,不是二元一次方程组,故本选项不符合题意、该方程组中的第一个方程的最高次数为2,不是二元一次方程组,故本选项不符合题意;、该方程组符合二元一次方程组的定义,故本选项符合题意;、该方程组中的第二个方程的最高次数为2,不是二元一次方程组,故本选项不符合题意;故选:.【点睛】本题主要考查二元一次方程组的判定,解题的关键是熟练掌握二元一次方程组的基本形式及特点.4、A【解析】【分析】根据图形可知,大长方形的长=7个小长方形的宽=2小长方形的长,大长方形的宽=小长方形的长+小长方形的宽,由此即可列出方程.【详解】解:设小长方形的长为x,宽为y,由题意得: 或,故选A.【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够正确理解题意和掌握长方形周长公式.5、B【解析】【分析】设这个班有y名同学,x本图书,根据题意可得:总图书数=人数×6+40,总图书数=人数×8-50,据此列方程组.【详解】解:设这个班有y名同学,x本图书,根据题意可得:,故选:B.【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.6、C【解析】【分析】先求出方程组的解,由方程组的解为正整数分析得出a值.【详解】解:解方程组,得, ∵方程组的解为正整数,∴a=0时,;a=2时,, ∴满足条件的所有整数a的和为0+2=2.故选:C.【点睛】此题考查了已知二元一次方程组的解求参数,解题的关键是求出方程组的解,由方程组解的情况分析得到a的值.7、C【解析】【分析】设原两位数的个位为 十位为 则这个两位数为 所以交换其个位数与十位数的位置,所得新两位数为 再列方程 再求解方程的符合条件的正整数解即可.【详解】解:设原两位数的个位为 十位为 则这个两位数为 交换其个位数与十位数的位置,所得新两位数为 则 整理得: 为正整数,且 或或或 所以这个两位数为: 故选C【点睛】本题考查的是二元一次方程的应用,二元一次方程的正整数解,理解题意,正确的表示一个两位数是解本题的关键.8、C【解析】【分析】组成二元一次方程组的两个方程应共含有两个相同的未知数,且未知数的项最高次数都应是一次的整式方程.【详解】解:①、符合二元一次方程组的定义,故①符合题意;②、第一个方程与第二个方程所含未知数共有3个,故②不符合题意;③、符合二元一次方程组的定义,故③符合题意;④、该方程组中第一个方程是二次方程,故④不符合题意.故选:.【点睛】本题考查了二元一次方程组的定义,解题时需要掌握二元一次方程组满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.9、A【解析】【分析】根据题意把x=3,y=-2代入方程2x+my=8,可得关于m的一元一次方程,解方程即可求出m的值.【详解】解:把x=3,y=-2代入方程2x+my=8,可得:,解得:.故选:A.【点睛】本题考查二元一次方程的解的定义以及解一元一次方程,注意掌握一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.10、B【解析】【分析】根据方程组解的定义,方程组的解适合方程组中的每个方程,转化为关于m、n的方程组即可解决问题.【详解】解:∵是二元一次方程组的解,∴,解得,∴m+n=5.故选:B.【点睛】本题考查二元一次方程组的解,理解方程组解的定义是解决问题的关键.二、填空题1、或【解析】【详解】解:根据题意得:或,解得:或,故答案为:或.【点睛】本题考查了解二元一次方程组,解题的关键是需要分两种情况解方程组,注意不要漏解.2、﹣1【解析】【分析】由①+②,得: ,从而得到 ,再由x+y=1,可得到 ,即可求解.【详解】解:,由①+②,得: ,∴ ,∵x+y=1,∴ ,解得: .故答案为:-1【点睛】本题主要考查了解二元一次方程和二元一次方程的解,由①+②得到 是解题的关键.3、【解析】【分析】设该店有客房x间,房客y人;根据一房七客多七客,一房九客一房空得出方程组即可.【详解】解:设该店有客房x间,房客y人;根据题意得:,故答案为:.【点睛】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.4、1350【解析】【分析】设A组工作x天,B组工作(x+m+)天,C组工作(x+m++n+)(x,m,n都是正整数且m≥1,n≥1),x+m++n+<15,根据该文具套装一套包含有1个笔袋,2只笔,3个笔记本,列方程组求方程组的整数解即可.【详解】解:设A组工作x天,B组工作(x+m+)天,C组工作(x+m++n+)(x,m,n都是正整数且m≥1,n≥1),x+m++n+<15根据题意由①得③由②得④④-5×③得∵m,n均为正整数,∴m为奇数,当m=1,n=2,x=5,x+m++n+=8<15;当m=3,n=5,x=7,x+m++n+=15>15不合题意;A组一共工作5天,270×5=1350个该文具超市至少一共订购了1350套文具套装.故答案为1350.【点睛】本题考查列三元一次方程组解应用题,方程的整数解,利用一套中的比例列方程组,得出是解题关键.5、 y=2x-3 【解析】略三、解答题1、 (1)(2)【解析】【分析】(1)方程组利用代入消元法求解即可;(2)方程组利用加减消元法求解即可.(1)解:将①代入②得:3x−(2x+2)=3,解得:x=5,把x=5代入①中,解得:y=12,∴方程组的解为:;(2)①×3-②得:13y=13,解得:y=1,把y=1代入①中,解得:x=2,∴方程组的解为:.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,做题的关键是根据方程特点选择合适的方法.2、 (1)(2)证明见解析(3)或.【解析】【分析】(1)根据新定义分别求解即可;(2)设“万象数”为 则其为 则再计算其“格致数”,再利用乘法的分配律进行变形即可证明结论;(3)由是的倍数,可得是的倍数,结合的范围可得 从而得到或或或或 再求解方程符合条件的解,可得的值,结合是完全平方数,从而可得答案.(1)解:由新定义可得: 当时, 故答案为:(2)解:设“万象数”为 则其为 则而 所以其“格致数” 所以其“格致数”都能被9整除.(3)解:是的倍数,是的倍数,是的倍数, ,,,a,b,c为整数, 或或或或 或或或或或 而,的值为:或或或或或 是完全平方数,的值为:或.【点睛】本题考查的是新定义运算的理解与运用,同时考查了二元一次方程的非负整数解问题,理解新定义,逐步分析与运算是解本题的关键.3、 (1)6423是“2倍和数”, 4816不是“2倍和数”,理由见解析;(2)最大值是3117,最小值是1107.【解析】【分析】(1)根据定义进行判断即可(2)设的个位上的数字为,十位上的数字为,则百位上的数字为,千位上的数字为,进而求得的各数位上的数字之和,根据,可得能被3整除,进而求二元一次方程的整数解即可,进而列出,即可求得的最大值和最小值.(1),∴6423是“2倍和数”,,∴4816不是“2倍和数”;(2)设的个位上的数字为,十位上的数字为,则百位上的数字为,千位上的数字为,,,,,为整数),的各数位上的数字之和为,各数位上的数字之和能被9整除,能被3整除,或,,,,的最大值是3117,最小值是1107.【点睛】本题考查了新定义,求二元一次方程的整数解,整除,理解新定义是解题的关键.4、 (1)(2)【解析】【分析】根据加减消元的方法求解即可.(1)解:,由①-②得:, ∴,把代入②,解得:,∴方程组的解为;(2)解:方程组整理得:,由①+②,得:,∴,把代入①,得:,∴方程组的解为.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5、【解析】【详解】解:,由①+③,②+2×③消去z得 解得代入①得:z=3.即原方程组的解为
相关试卷
这是一份数学七年级下册第六章 二元一次方程组综合与测试达标测试,共18页。试卷主要包含了有下列方程等内容,欢迎下载使用。
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试课时练习,共18页。试卷主要包含了下列方程是二元一次方程的是,方程组 消去x得到的方程是等内容,欢迎下载使用。
这是一份初中冀教版第六章 二元一次方程组综合与测试一课一练,共18页。试卷主要包含了已知方程组的解满足,则的值为,方程组 消去x得到的方程是,下列各式中是二元一次方程的是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)