所属成套资源:高考数学(理数)二轮专题复习 课时练习+专题复习(教师版+学生版)
高考数学(理数)二轮专题复习:09《概率与统计》课时练习(11课时学生版)
展开
这是一份高考数学(理数)二轮专题复习:09《概率与统计》课时练习(11课时学生版),共27页。
1.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )
A.24 B.48 C.60 D.72
2.如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )
A.24条 B.18条 C.12条 D.9条
3.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )
A.60种 B.70种
C.75种 D.150种
4.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )
A.72种 B.120种
C.144种 D.168种
5.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )
A.144个 B.120个 C.96个 D.72个
6.某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了____条毕业留言.(用数字作答)
7.把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有____________种.
8.从3名骨科,4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法有______种.(用数字作答)
9.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有______中不同的选法.(用数字作答)
10.用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有__________个.(用数字作答)
第2讲 二项式定理
1.设i为虚数单位,则(x+i)6的展开式中含x4的项为( )
A.-15x4 B.15x4 C.-20i x4 D.20i x4
2.已知eq \b\lc\(\rc\)(\a\vs4\al\c1(x2+\f(1,x)))n的二项展开式的各项系数之和为32,则二项展开式中x的系数为( )
A.5 B.10 C.20 D.40
3.二项式(x+1)n(n∈N*)的展开式中x2的系数为15,则n=( )
A.4 B.5 C.6 D.7
4.已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=( )
A.-4 B.-3 C.-2 D.-1
5.设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=( )
A.5 B.6 C.7 D.8
6.已知(1+x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )
A.212 B.211 C.210 D.29
7.设(x-2y)5(x+3y)4=a9x9+a8x8y+a7x7y2+…+a1xy8+a0y9,则a0+a8=__________.
8.(x+a)10的展开式中,x7的系数为15,则a=________.(用数字作答)
9.已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x1+a5,则a4=_____,a5=_____.
10.(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=________.
11.在eq \b\lc\(\rc\)(\a\vs4\al\c1(1+x+\f(1,x2015)))10的展开式中,x2项的系数为________.(结果用数值表示)
12.设(3x-1)4=a0+a1x+a2x2+a3x3+a4x4.
(1)求a0+a1+a2+a3+a4;
(2)求a0+a2+a4;
(3)求a1+a3;
(4)求a1+a2+a3+a4;
(5)求各项二项式系数的和.
第3讲 随机事件的概率
1.对某电视机厂生产的电视机进行抽样检测,数据如下:
则该厂生产的电视机是优等品的概率约为( )
A.0.92 B.0.94 C.0.95 D.0.96
2.抽查10件产品,设事件A:至少有2件次品,则A的对立事件为( )
A.至多有2件次品 B.至多有1件次品
C.至多有2件正品 D.至多有1件正品
3.甲、乙等4人在微信群中每人抢到一个红包,金额为3个1元,1个5元,则甲、乙的红包金额不相等的概率为( )
A.eq \f(1,4) B.eq \f(1,2) C.eq \f(1,3) D.eq \f(3,4)
4.4名同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )
A.eq \f(1,8) B.eq \f(3,8) C.eq \f(5,8) D.eq \f(7,8)
5.甲、乙两人玩数字游戏,先由甲任想一数字,记为a,再由乙猜甲刚才想的数字,把乙猜出的数字记为b,且a,b∈{1,2,3},若|a-b|≤1,则称甲、乙“心有灵犀”.现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为( )
A.eq \f(1,3) B.eq \f(5,9) C.eq \f(2,3) D.eq \f(7,9)
6.在一次班级聚会上,某班到会的女同学比男同学多6人,从这些同学中随机挑选一人表演节目.若选到女同学的概率为eq \f(2,3),则这班参加聚会的同学的人数为( )
A.12 B.18 C.24 D.32
7.从1,2,3,6这4个数中一次随机地取2个数,则所取两个数的乘积为6的概率为__________.
8.从40张扑克牌(红桃、黑桃、方块、梅花点数从1~10各10张)中,任取1张,判断下列给出的每对事件,互斥事件为________,对立事件为________.
①“抽出红桃”与“抽出黑桃”;
②“抽出红色牌”与“抽出黑色牌”;
③“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”.
9.甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为eq \f(1,2),各局比赛的结果相互独立,第1局甲当裁判.
(1)求第4局甲当裁判的概率;
(2)求前4局中乙恰好当1次裁判的概率.
10.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1,b2的乙箱中,各随机摸出1个球,若摸出的2个球都是红球,则中奖,否则不中奖.
(1)用球的标号列出所有可能的摸出结果;
(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.
11.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:
A地区:62 73 81 92 95 85 74 64 53 76
78 86 95 66 97 78 88 82 76 89
B地区:73 83 62 51 91 46 53 73 64 82
93 48 65 81 74 56 54 76 65 79
(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图(如图X911)比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);
图X911
(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:
记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.
12.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:
(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;
(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.
第4讲 古典概型
1.在{1,3,5}和{2,4}两个集合中各取一个数组成一个两位数,则这个数能被4整除的概率是( )
A.eq \f(1,3) B.eq \f(1,2) C.eq \f(1,6) D.eq \f(1,4)
2.在2,0,1,5这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为( )
A.eq \f(3,4) B.eq \f(5,8) C.eq \f(1,2) D.eq \f(1,4)
3.从正方形4个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )
A.eq \f(1,5) B.eq \f(2,5) C.eq \f(3,5) D.eq \f(4,5)
4.一个袋子中有5个大小、质地都相同的球,其中3个白球与2个黑球,现从袋中任意取出1个球,取出后不放回,然后再从袋中任意取出1个球,则第一次为白球、第二次为黑球的概率为( )
A.eq \f(3,5) B.eq \f(3,10) C.eq \f(1,2) D.eq \f(6,25)
5.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为________.
6.某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为______.
7.五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为( )
A.eq \f(1,2) B.eq \f(15,32) C.eq \f(11,32) D.eq \f(5,16)
8.从2,3,8,9任取两个不同的数值,分别记为a,b,则lgab为整数的概率=______.
9.某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)
(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;
(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.
10.某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:
①若xy≤3,则奖励玩具一个;
②若xy≥8,则奖励水杯一个;
③其余情况奖励饮料一瓶.
假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.
(1)求小亮获得玩具的概率;
(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.
第5讲 几何概型
1.函数f(x)=-x2+2x,x∈[-1, 3],则任取一点x0∈[-1, 3],使得f(x0)≥0的概率为( )
A.eq \f(1,6) B.eq \f(1,3) C.eq \f(1,2) D.eq \f(2,3)
2.在长为12 cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20 cm2的概率为( )
A.eq \f(1,6) B.eq \f(1,3) C.eq \f(2,3) D.eq \f(4,5)
3.节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )
A.eq \f(1,4) B.eq \f(1,2) C.eq \f(3,4) D.eq \f(7,8)
4.设复数z=(x-1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为( )
A.eq \f(3,4)+eq \f(1,2π) B.eq \f(1,2)+eq \f(1,π) C.eq \f(1,4)-eq \f(1,2π) D.eq \f(1,2)-eq \f(1,π)
5.如图,在矩形ABCD中,点A在x轴上,点B的坐标为(1,0),且点C与点D在函数f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(x+1,x≥0,,-\f(1,2)x+1,x3)=0.023,则P(-3≤ξ≤3)=( )
A.0.477 B.0.628 C.0.954 D.0.977
4.在某次数学测试中,学生成绩ξ服从正态分布N(100,σ2)(σ>0),若ξ在(80,120)内的概率为0.8,则ξ在(0,80)内的概率为( )
A.0.05 B.0.1 C.0.15 D.0.2
5.已知随机变量ξ服从正态分布N(1,σ2),P(ξ≤4)=0.84,则P(ξ≤-2)=( )
A.0.16 B.0.32 C.0.68 D.0.84
6.在如图所示的正方形中随机投掷10 000个点,则落入阴影部分[曲线C为正态分布N(0,1)的密度曲线]的点的个数的估计值为( )
A.2386 B.2718 C.3413 D.4772
7.某个部件由三个元件按图X982的方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:时)均服从正态分布N(1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为________.
8.某市教育局为了解高三学生体育达标情况,对全市高三学生进行了体能测试,经分析,全市学生体能测试成绩X服从正态分布N(80,σ2)(满分为100分),已知P(X<75)=0.3,P(X≥95)=0.1,现从该市高三学生中随机抽取三位同学.
(1)求抽到的三位同学该次体能测试成绩在区间[80,85),[85,95),[95,100]各有一位同学的概率;
(2)记抽到的三位同学该次体能测试成绩在区间[75,85]的人数为ξ,求随机变量ξ的分布列和数学期望.
9.某市高中男生身高统计调查数据显示:全市100 000名男生的身高服从正态分布N(168,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160 cm和184 cm之间,将测量结果按如下方式分成6组:第1组[160,164),第2组[164,168),…,第6组[180,184],如图X984是按上述分组方法得到的频率分布直方图.
(1)试估计该校高三年级男生的平均身高;
(2)求这50名男生中身高在172 cm以上(含172 cm)的人数;
(3)从(2)中身高在172 cm以上(含172 cm)的男生里任意抽取2人,将这2人身高纳入全市排名(从高到低),能进入全市前130名的人数记为ξ,求ξ的数学期望.
[参考数据:若ξ~N(μ,σ2),则P(μ-σ
相关试卷
这是一份高考数学(理数)二轮专题复习:23《概率与统计》阶段测试七(学生版),共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份高考数学(理数)二轮专题复习:16《概率与统计》专题练习(学生版),共3页。试卷主要包含了某年级举办团知识竞赛等内容,欢迎下载使用。
这是一份高考数学(理数)二轮专题复习:11《函数与导数》专题练习(2课时学生版),共5页。试卷主要包含了已知函数f=ln x-a,已知函数f=ax-ln x等内容,欢迎下载使用。