所属成套资源:高考数学(理数)二轮专题复习 课时练习+专题复习(教师版+学生版)
高考数学(理数)二轮专题复习:23《概率与统计》阶段测试七(学生版)
展开
这是一份高考数学(理数)二轮专题复习:23《概率与统计》阶段测试七(学生版),共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
阶段检测卷(七)(概率与统计)时间:50分钟 满分:100分一、选择题:本大题共8小题,每小题6分,共48分,有且只有一个正确答案,请将正确选项填入题后的括号中.1.高三(3)班共有学生56人,座号分别为1,2,3,…,56,现根据座号,用系统抽样的方法,抽取一个容量为4的样本.已知3号、17号、45号同学在样本中,则样本中还有一个同学的座号是( )A.30 B.31 C.32 D.332.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( )A. B. C. D.3.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A. B. C. D.4.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A.134石 B.169石 C.338石 D.1365石5.为了研究某药品的疗效,选取若干名志愿者进行临床试验.如图,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.下图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A.6 B.8 C.12 D.18 6.一个三位数,个位、十位、百位上的数字依次为x,y,z,当且仅当y>x,y>z时,称这样的数为“凸数”(如243),现从集合{1,2,3,4}中取出三个不相同的数组成一个三位数,则这个三位数是“凸数”的概率为( )A. B. C. D.7.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图(如图N72).下列结论不正确的是( )A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关8.如图,将一个各面都涂了油漆的正方体,切割成125个同样大小的小正方体.经过搅拌后,从中随机取出一个小正方体,记它的涂油漆面数为X,则X的均值E(X)=( )A. B. C. D.二、填空题:本大题共3小题,每小题6分,共18分,把答案填在题中横线上.9.设(x2-3x+2)5=a0+a1x+a2x2+…+a10x10,则a1=______.10.假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为p0.则p0的值为________.(参考数据:若X~N(μ,σ2),有P(μ-σ<X<μ+σ)=0.6827,P(μ-2σ<X<μ+2σ)=0.9545,P(μ-3σ<X<μ+3σ)=0.9973.)11.张先生订了一份报纸,送报人在早上6∶30~7∶30之间把报纸送到他家,张先生离开家去上班的时间在早上7∶00~8∶00之间,则张先生在离开家之前能得到报纸的概率是________. 三、解答题:本大题共2小题,共34分,解答须写出文字说明、证明过程或演算步骤.12.(14分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值? 13.(20分)“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品.为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据(xi,yi)(i=1,2,…,6),如下表所示:试销单价x/元456789产品销量y/件q8483807568已知==80.(1)求出q的值;(2)已知变量x,y具有线性相关关系,求产品销量y(单位:件)关于试销单价x(单位:元)的线性回归方程=x+;(3)用i表示(2)中所求的线性回归方程得到的与xi对应的产品销量的估计值.当销售数据(xi,yi)的残差的绝对值|i-yi|≤1时,则将销售数据(xi,yi)称为一个“好数据”.现从6个销售数据中任取3个,求“好数据”个数ξ的分布列和数学期望E(ξ).(参考公式:线性回归方程中,的最小二乘估计分别为=,=-)
相关试卷
这是一份高考数学(理数)二轮专题复习:23《概率与统计》阶段测试七(教师版),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份高考数学(理数)二轮专题复习:22《立体几何》阶段测试六(学生版),共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份高考数学(理数)二轮专题复习:19《数列》阶段测试三(学生版),共3页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。