开学活动
搜索
    上传资料 赚现金

    2022年最新沪教版七年级数学第二学期第十五章平面直角坐标系专项测评试卷

    2022年最新沪教版七年级数学第二学期第十五章平面直角坐标系专项测评试卷第1页
    2022年最新沪教版七年级数学第二学期第十五章平面直角坐标系专项测评试卷第2页
    2022年最新沪教版七年级数学第二学期第十五章平面直角坐标系专项测评试卷第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试测试题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试测试题,共30页。试卷主要包含了已知点A,已知点A象限,如果点P等内容,欢迎下载使用。
    七年级数学第二学期第十五章平面直角坐标系专项测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、在平面直角坐标系中,点(1,3)关于原点对称的点的坐标是 ( )
    A.( - 1, - 3) B.( - 1,3) C.(1, - 3) D.(3,1)
    2、如图,在坐标系中用手盖住一点,若点到轴的距离为2,到轴的距离为6,则点的坐标是( )

    A. B. C. D.
    3、如图,的顶点坐标为,,,若将绕点按顺时针方向旋转90°,再向左平移2个单位长度,得到,则点的对应点的坐标是( ).

    A. B. C. D.
    4、已知点A(x+2,x﹣3)在y轴上,则x的值为(  )
    A.﹣2 B.3 C.0 D.﹣3
    5、已知点A(n,3)在y轴上,则点B(n-1,n+1)在第()象限
    A.四 B.三 C.二 D.一
    6、在平面直角坐标系中,已知点A(-4,3)与点B关于y轴对称,则点B的坐标为( )
    A.(-4,-3) B.(4,3) C.(4,-3) D.(-4,3)
    7、如图,在平面直角坐标系中,已知“蝴蝶”上有两点,,将该“蝴蝶”经过平移后点的对应点为,则点的对应点的坐标为( )

    A. B. C. D.
    8、平面直角坐标系内与点P关于原点对称的点的坐标是( )
    A. B. C. D.
    9、如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b=(  )
    A.﹣1 B.1 C.﹣5 D.5
    10、已知点关于x轴的对称点与点关于y轴的对称点重合,则( )
    A.5 B.1 C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、正方形ABCD在坐标系中的位置如图所示.A(0,3),B(2,4),C(3,2),D(1,10).将正方形ABCD绕D点旋转90°后,点B到达的位置坐标为_____.

    2、若点P(m﹣1,5)与点Q(﹣3,n)关于原点成中心对称,则m﹣n的值是___.
    3、平面直角坐标系中,点P(-2,-5)到x轴距离是____.
    4、若点A在第二象限,且A点到x轴的距离为3,到y轴的距离为4,则点A的坐为_______.
    5、在平面直角坐标系中,点A(m,−5)和点B(−2,n)关于x轴对称,则m+n=______.
    三、解答题(10小题,每小题5分,共计50分)
    1、如图,在平面直角坐标系中,点B的坐标是,点C的坐标为,CB交x轴负半轴于点A,过点B作射线,作射线CD交BM于点D,且
    (1)求证:点A为线段BC的中点.
    (2)求点D的坐标.

    2、如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(2,1),B(0,1),C(0,4).
    (1)画出△ABC关于x轴对称的△A1B1C1,A、B、C的对应点分别为A1,B1,C1;
    (2)画出△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2,A、B、C的对应点分别为A2,B2,C2.连接B2C2,并直接写出线段B2C2的长度.

    3、如图,在平面直角坐标系中,的三个顶点都在格点上,点的坐标为,请回答下列问题.
    (1)画出关于x轴对称的,并写出点的坐标(___,___)
    (2)点P是x轴上一点,当的长最小时,点P坐标为______;
    (3)点M是直线BC上一点,则AM的最小值为______.

    4、如图,在平面直角坐标系中,ABC的顶点坐标为A(﹣1,1),B(﹣3,2),C(﹣2,4).
    (1)在图中作出ABC向右平移4个单位,再向下平移5个单位得到的A1B1C1;
    (2)在图中作出A1B1C1关于y轴对称的A2B2C2;
    (3)经过上述平移变换和轴对称变换后,ABC内部的任意一点P(a,b)在A2B2C2内部的对应点P2的坐标为 .

    5、如图,在平面直角坐标系中,点A的坐标为A(0,6),点B的坐标为B(8, 0),点P从点A出发,沿折线A→O→B以每秒1个单位长度的速度向终点B运动;点Q从B点出发,沿折线B→O→A以每秒3个单位长度的速度向终点A运动.P,Q两点同时出发,当其中一点到达终点时另一点也停止运动.直线l经过原点O,分别过P,Q两点作PE⊥l于E,QF⊥l于点F,设点P的运动时间为t(秒):
    (1)当P,Q两点相遇时,求t的值;
    (2)在整个运动过程中,用含t的式子表示Q点的坐标;
    (3)在整个运动过程中,以O,P,E为顶点的三角形与以O,Q,F为顶点的三角形能否全等?若能全等,请求出Q点的坐标,若不能全等,请说明理由.

    6、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).

    (1)直接写出点B关于原点对称的点B′的坐标:  ;
    (2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1;
    (3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2.
    7、如图,在平面直角坐标中,、、.

    (1)在图中作出关于轴的对称图形;
    (2)直接写出点、、的坐标:________,________,________.
    (3)求的面积.
    8、在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O及ABC的顶点都在格点上.
    (1)在图中作出DEF,使得DEE与ABC关于x轴对称;
    (2)写出D,E两点的坐标:D ,E .
    (3)求DEF的面积.

    9、如图1,将射线OX按逆时针方向旋转β角,得到射线OY,如果点P为射线OY上的一点,且OP=a,那么我们规定用(a,β)表示点P在平面内的位置,并记为P(a,β).例如,图2中,如果OM=8,∠XOM=110°,那么点M在平面内的位置,记为M(8,110),根据图形,解答下面的问题:
    (1)如图3,如果点N在平面内的位置记为N(6,30),那么ON=________;∠XON=________.
    (2)如果点A,B在平面内的位置分别记为A(5,30),B(12,120),画出图形并求出AOB的面积.

    10、马来西亚航空公司MH370航班自失联以来,我国派出大量救援力量,竭尽全力展开海上搜寻行动.某天中国海巡01号继续在南印度洋海域搜索,发现了一个位于东经101度,南纬25度的可疑物体.如果约定“经度在前,纬度在后”,那么我们可以用有序数对(101,25)表示该可疑物体的位置,仿照此表示方法,东经116度,南纬38度如何用有序数对表示?

    -参考答案-
    一、单选题
    1、A
    【分析】
    由两个点关于原点对称时,它们的坐标符号相反特点进行求解即可.
    【详解】
    解:∵两个点关于原点对称时,它们的坐标符号相反,
    ∴点关于原点对称的点的坐标是.
    故选:A.
    【点睛】
    题目考查了关于原点对称的点的坐标,解题关键是掌握好关于原点对称点的坐标规律.
    2、C
    【分析】
    首先根据P点在第四象限,可以确定P点横纵坐标的符号,再由P到坐标轴的距离即可确定P点坐标.
    【详解】
    解:∵P点在第四象限,
    ∴P点横坐标大于0,纵坐标小于0,
    ∵P点到x轴的距离为2,到y轴的距离为6,
    ∴P点的坐标为(6,-2),
    故选C.
    【点睛】
    本题主要考查了点所在的象限的坐标特征,点到坐标轴的距离,解题的关键在于能够熟练掌握第四象限点的坐标特征.
    3、A
    【分析】
    画出旋转平移后的图形即可解决问题.
    【详解】
    解:旋转,平移后的图形如图所示,,

    故选:A
    【点睛】
    本题考查坐标与图形变化−旋转,解题的关键是理解题意,学会利用图象法解决问题.
    4、A
    【分析】
    根据y轴上点的横坐标为0列方程求解即可.
    【详解】
    解:∵点A(x+2,x﹣3)在y轴上,
    ∴x+2=0,
    解得x=-2.
    故选:A.
    【点睛】
    本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.
    5、C
    【分析】
    直接利用y轴上点的坐标特点得出n的值,进而得出答案.
    【详解】
    解:∵点A(n,3)在y轴上,
    ∴n=0,
    则点B(n-1,n+1)为:(-1,1),在第二象限.
    故选:C.
    【点睛】
    本题主要考查了点的坐标,正确得出n的值是解题关键.
    6、B
    【分析】
    利用y轴对称的点的坐标特征:横坐标互为相反数,纵坐标相等,即可求出点B的坐标.
    【详解】
    解:∵ A(-4,3) ,
    ∴关于y轴对称点B的坐标为(4,3).
    故答案为:B.
    【点睛】
    本题主要是考查了y轴对称的点的坐标特征,熟练掌握关于不同坐标轴对称的点的坐标特征,是解决此类问题的关键.
    7、D
    【分析】
    先根据与点对应,求出平移规律,再利用平移特征求出点B′坐标即可
    【详解】
    解:∵与点对应,
    ∴平移1-3=-2,3-7=-4,
    先向下平移4个单位,再向左平移2个单位,
    ∵点B(7,7),
    ∴点B′(7-2,7-4)即.
    如图所示

    故选:D.
    【点睛】
    本题考查图形与坐标,点的平移特征,掌握点的平移特征是解题关键.
    8、C
    【分析】
    根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可.
    【详解】
    解:由题意,得
    点P(-2,3)关于原点对称的点的坐标是(2,-3),
    故选:C.
    【点睛】
    本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
    9、B
    【分析】
    根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,求出a、b的值,再计算a+b的值.
    【详解】
    解:∵点P(﹣2,b)和点Q(a,﹣3),
    又∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,
    ∴a=﹣2,b=3.
    ∴a+b=1,
    故选:B.
    【点睛】
    本题主要考查了关于x轴对称点的性质,点P(x,y)关于x轴的对称点P′的坐标是(x,-y),正确记忆横纵坐标的关系是解题关键.
    10、D
    【分析】
    点关于x轴的对称点(a,-2),点关于y轴的对称点(-3,b),根据(a,-2)与点(-3,b)是同一个点,得到横坐标相同,纵坐标相同,计算a,b计算即可.
    【详解】
    ∵点关于x轴的对称点(a,-2),点关于y轴的对称点(-3,b),(a,-2)与点(-3,b)是同一个点,
    ∴a=-3,b=-2,
    ∴-5,
    故选D.
    【点睛】
    本题考查了坐标系中点的轴对称,熟练掌握对称时坐标的变化规律是解题的关键.
    二、填空题
    1、 (4,0)或(﹣2,2)
    【分析】
    利用网格结构找出点B绕点D旋转90°后的位置,然后根据平面直角坐标系写出点的坐标即可.
    【详解】
    解:如图,点B绕点D旋转90°到达点B′或B″,

    点B′的坐标为(4,0),B″(﹣2,2).
    故答案为:(4,0)或(﹣2,2).
    【点睛】
    本题主要考查了坐标与图形变化—旋转,解题的关键在于能够利用数形结合的思想进行求解.
    2、9
    【分析】
    根据关于原点对称点的坐标特征求出、的值,再代入计算即可.
    【详解】
    解:点与点关于原点成中心对称,
    ,,
    即,,

    故答案为:9.
    【点睛】
    本题考查关于原点对称的点坐标特征,解题的关键是掌握关于原点对称的点坐标特征,即纵坐标互为相反数,横坐标也互为相反数.
    3、5
    【分析】
    根据点到x轴的距离等于纵坐标的绝对值解答即可.
    【详解】
    解:点P(-2,-5)到x轴的距离是5.
    故答案为:5.
    【点睛】
    本题考查了点到坐标轴的距离,熟记点到x轴的距离等于纵坐标的绝对值是解题的关键.
    4、
    【分析】
    先根据点在第二象限可得点的横坐标为负数、纵坐标为正数,再根据点到坐标轴的距离即可得.
    【详解】
    解:点在第二象限,
    点的横坐标为负数、纵坐标为正数,
    点到轴的距离为3,到轴的距离为4,
    点的横坐标为、纵坐标为3,
    即点的坐标为,
    故答案为:.
    【点睛】
    本题考查了点坐标、点到坐标轴的距离,熟练掌握四个象限内的点坐标的符号规律是解题关键.
    5、3
    【分析】
    根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得m、n的值,进而可得答案.
    【详解】
    解:∵点A(m,−5)与点B(−2,n)关于x轴对称,
    ∴m=-2,n=5,
    ∴m+n=3,
    故答案是:3.
    【点睛】
    本题主要考查了关于x轴对称的点的坐标,关键是掌握关于x轴的点的坐标特点.
    三、解答题
    1、(1)证明见解析,(2)(8,2).
    【分析】
    (1)过点C作CQ⊥OA于Q,证△CQA≌△BOA,即可证明点A为线段BC的中点;
    (2)过点C作CR⊥OB于R,过点D作DS⊥OB于S,证△CRB≌△BSD,根据全等三角形对应边相等即可求点D的坐标.
    【详解】
    (1)证明:过点C作CQ⊥OA于Q,
    ∵点B的坐标是,点C的坐标为,
    ∴CQ=OB=4,
    ∵∠CQO=∠BOA=90°,∠CAQ=∠BAO,
    ∴△CQA≌△BOA,
    ∴CA=AB,
    ∴点A为线段BC的中点.
    (2)过点C作CR⊥OB于R,过点D作DS⊥OB于S,
    ∵,
    ∴∠CRB=∠DSB=∠CBD=90°,
    ∴∠CBR+∠SBD=90°,∠SDB+∠SBD=90°,
    ∴∠CBR=∠SDB,
    ∵,
    ∴∠BCD=∠BDC=45°,
    ∴CB=DB,
    ∴△CRB≌△BSD,
    ∴CR=SB,RB=DS,
    ∵点B的坐标是,点C的坐标为,
    ∴CR=SB=6,RB=DS=8,
    ∴OS=SB-OB=2,
    点D的坐标为(8,2).

    【点睛】
    本题考查了全等三角形的判定与性质和点的坐标,解题关键是树立数形结合思想,恰当作辅助线,构建全等三角形.
    2、(1)作图见解析;(2)作图见解析,
    【分析】
    (1)关于轴对称,即对应点横坐标不变,纵坐标互为相反数,找出坐标即可;
    (2)根据旋转的性质可画出图形,即可找出的坐标,由即可得出答案.
    【详解】
    (1)

    关于轴对称的如图所作,
    ,,,
    ,,;
    (2)绕原点逆时针方向旋转得到的如图所示,
    由旋转的性质得:.
    【点睛】
    本题考查轴对称与旋转作图,掌握轴对称的性质以及旋转的性质是解题的关键.
    3、(1)5,-3;(2)(,0);(3)
    【分析】
    (1)利用关于x轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;
    (2)连接BC1交x轴于点P,利用两点之间线段最短可判断P点满足条件,利用待定系数法求得直线BC1的解析式,即可求解;
    (3)利用割补法求得△ABC的面积,利用两点之间的距离公式求得BC的长,再利用面积法即可求解.
    【详解】
    解:(1)如图,△A1B1C1为所作,点C1的坐标为(5,-3);

    故答案为:5,-3;
    (2)如图,点P为所作.
    设直线BC1的解析式为y=kx+b,
    ∵点C1的坐标为(5,-3),点B的坐标为(1,2),
    ∴,解得:,
    ∴直线BC1的解析式为y=x+,
    当y=0时,x=,
    ∴点P的坐标为(,0);
    故答案为:(,0);
    (3)根据垂线段最短,当AM垂直BC时,垂线段AM取得最小值,
    △ABC的面积为2×4-×2×1-×4×1-×3×1=;
    BC=,
    ∵××AM=,
    ∴AM=.
    故答案为:.
    【点睛】
    本题考查了作图-轴对称变换:几何图形都可看作是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.注意:关于x轴对称的点,横坐标相同,纵坐标互为相反数.
    4、(1)见解析;(2)见解析;(3)(﹣a﹣4,b﹣5)
    【分析】
    (1)利用平移变换的性质分别作出A,B,C 的对应点A1,B1,C1即可;
    (2)利用轴对称变换的性质分别作出A1,B1,C1的对应点A2,B2,C2即可;
    (3)利用平移变换的性质,轴对称变换的性质解决问题即可.
    【详解】
    解:(1)如图,△A1B1C1即为所求;
    (2)如图,△A2B2C2即为所求;

    (3)由题意得:P(﹣a﹣4,b﹣5).
    故答案为:(﹣a﹣4,b﹣5);
    【点睛】
    本题考查作图−轴对称变换,平移变换的性质等知识,解题的关键是掌握轴对称的性质,平移变换的性质,属于中考常考题型.
    5、(1)秒;(2)Q(,0)或 Q(0,);(3)能全等,(5,0)或(0,)
    【分析】
    (1)由P,Q两点相遇即P,Q两点运动的路程和为OB+OA=8+6,据此列方程求解即可;
    (2)分点Q在线段OB上和在线段OA上两种情况讨论,即可求解;
    (2)分三种情况讨论,根据全等三角形的性质即可求解.
    【详解】
    解:(1)∵点A的坐标为A(0,6),点B的坐标为B(8, 0),
    ∴OA=6,OB=8,
    根据题意得:,
    ∴,
    解得:
    ∴当P,Q两点相遇时,的值为秒;
    (2)∵点Q可能在线段OB上,也可能在线段OA上.
    ∴①当点Q在线段OB上时:Q(8-3t,0);
    ②当点Q在线段OA上时:Q(0,3t-8);
    综上,Q点的坐标为(8-3t,0)或(0,3t-8);
    (3)答:在整个运动过程中,以O,P,E为顶点的三角形与以O,Q,F为顶点的三角形能全等.
    理由:①当时,点Q在OB上,点P在OA上,
    ∵∠PEO=∠QFO=90°,
    ∴∠POE+∠QOF=90°,∠OQF+∠QOF=90°,
    ∴∠POE=∠OQF,
    ∴△POE≌△OQF,
    ∴PO=QO,即:,
    解得:t=1;
    ②当时,点Q在OA上,点P也在OA上,
    ∵∠PEO=∠QFO=90°,
    ∠POE=∠QOF(公共角),即P,Q重合时,△POE≌△QOF,
    ∴PO=QO,即:,
    解得:;
    当点Q运动到A点时,P点还未到达O点,所以不存在这种种情况
    ∵当t=1时,点Q在x轴上,(5,0);
    当t=时,点Q在y轴上,(0,)
    ∴当Q点坐标为(5,0)或(0,)时,以O,P,E为顶点的三角形与以O,Q,F为顶点的三角形全等.
    【点睛】
    本题考查了坐标与图形,全等三角形的性质,一元一次方程的应用,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.
    6、(1)(4,﹣1);(2)见解析;(3)见解析.
    【分析】
    (1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;
    (2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;
    (3)将三个点分别绕原点O逆时针旋转90°后得到对应点,再首尾顺次连接即可.
    【详解】
    (1)点B关于原点对称的点B′的坐标为(4,﹣1),
    故答案为:(4,﹣1);
    (2)如图所示,△A1B1C1即为所求.

    (3)如图所示,△A2B2C2即为所求.
    【点睛】
    本题主要考查作图—平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点.
    7、(1)见解析;(2),,;(3)
    【分析】
    (1)根据轴对称图形的特点画出图形即可;
    (2)根据所画出的图形写出点的坐标;
    (3)首先把三角形放在一个大正方形内,再用大正方形的面积减去四周三角形的面积即可.
    【详解】
    解:(1)如图所示:

    (2)根据平面直角坐标系可得:,,;
    故答案为:,,
    (3)△ABC的面积=3×5-×3×3-×2×1-×5×2=.
    【点睛】
    本题主要考查了轴对称图形,以及点的坐标,三角形的面积,关键是掌握在计算不规则图形的面积时,可以利用可以用补图的方法.
    8、(1)见解析;(2)(﹣1,﹣4),(﹣4,1);(3)9.5
    【分析】
    (1)先找出点A、B、C关于x轴的对称点,然后依次连接即可得;
    (2)根据△DEF的位置,即可得出D,E两点的坐标;
    (3)依据割补法进行计算,使用长方形面积减去三个三角形面积即可得到△DEF的面积.
    【详解】
    解:(1)如图所示,△DEF即为所求;

    (2)由图可得,D(﹣1,﹣4),E(﹣4,1);
    故答案为:(﹣1,﹣4),(﹣4,1);
    (3)SΔDEF=5×5-12×2×5-12×2×3-12×3×5=9.5,
    ∴面积为9.5.
    【点睛】
    题目主要考查作轴对称图形,点在坐标系中的位置及利用割补法求三角形面积,熟练掌握轴对称图形的作法是解题关键.
    9、(1)6,30°;(2)见解析,30
    【分析】
    (1)由题意得第一个坐标表示此点距离原点的距离,第二个坐标表示此点与原点的连线与x轴所夹的角的度数;
    (2)根据相应的度数判断出△AOB的形状,再利用三角形的面积公式求解即可.
    【详解】
    (1)根据点N在平面内的位置N(6,30)可知,ON=6,∠XON=30°.
    答案:6,30°
    (2)如图所示:

    ∵A(5,30),B(12,120),
    ∴∠BOX=120°,∠AOX=30°,
    ∴∠AOB=90°,
    ∵OA=5,OB=12,
    ∴△AOB的面积为OA·OB=30.
    【点睛】
    本题考查了坐标确定位置及旋转的性质,解决本题的关键是理解所给的新坐标的含义.
    10、东经度,南纬度可以表示为.
    【分析】
    根据“经度在前,纬度在后”的顺序,可以将东经度,南纬度用有序数对表示.
    【详解】
    解:由题意可知东经度,南纬度,可用有序数对表示.
    故东经度,南纬度表示为.
    【点睛】
    本题考察了用有序数对表示位置.解题的关键在于读懂题意中给定的规则.

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题,共27页。试卷主要包含了在平面直角坐标系中,点P等内容,欢迎下载使用。

    2021学年第十五章 平面直角坐标系综合与测试同步训练题:

    这是一份2021学年第十五章 平面直角坐标系综合与测试同步训练题,共27页。试卷主要包含了已知点P,平面直角坐标系中,点P,如果点P,在平面直角坐标系中,点A,在平面直角坐标系中,点P等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练,共29页。试卷主要包含了点P关于y轴对称点的坐标是.,已知点A,平面直角坐标系内一点P等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map