![2022年最新沪教版七年级数学第二学期第十五章平面直角坐标系定向测评练习题(含详解)01](http://img-preview.51jiaoxi.com/2/3/12712475/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新沪教版七年级数学第二学期第十五章平面直角坐标系定向测评练习题(含详解)02](http://img-preview.51jiaoxi.com/2/3/12712475/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新沪教版七年级数学第二学期第十五章平面直角坐标系定向测评练习题(含详解)03](http://img-preview.51jiaoxi.com/2/3/12712475/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后测评
展开七年级数学第二学期第十五章平面直角坐标系定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在平面直角坐标系中,点A(0,3),B(2,1),经过点A的直线l∥x轴,C是直线l上的一个动点,当线段BC的长度最短时,点C的坐标为( )
A.(0,1) B.(2,0) C.(2,﹣1) D.(2,3)
2、在平面直角坐标系中,已知点A(-4,3)与点B关于y轴对称,则点B的坐标为( )
A.(-4,-3) B.(4,3) C.(4,-3) D.(-4,3)
3、若点在第三象限内,则m的值可以是( )
A.2 B.0 C. D.
4、在平面直角坐标系中,点的坐标是,点与点关于轴对称,则点的坐标是( )
A. B. C. D.
5、第24届冬季奥林匹克运动会将于2022年2月4日~20日在北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )
A.离北京市100千米 B.在河北省
C.在怀来县北方 D.东经114.8°,北纬40.8°
6、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为( )
A.-1008 B.-1010 C.1012 D.-1012
7、在平面直角坐标系中,下列各点与点(2,3)关于x轴对称的是( )
A.(2,﹣3) B.(3,2) C.(﹣2,﹣3) D.(﹣2,3)
8、平面直角坐标系内与点P关于原点对称的点的坐标是( )
A. B. C. D.
9、已知点A(x+2,x﹣3)在y轴上,则x的值为( )
A.﹣2 B.3 C.0 D.﹣3
10、若点P(m,1)在第二象限内,则点Q(1﹣m,﹣1)在( )
A.第四象限 B.第三象限 C.第二象限 D.第一象限
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知点与关于原点对称,则xy的值是______.
2、在平面直角坐标系中,点P(2,﹣3)到x轴的距离为 ___.
3、已知点在轴上,则________;点的坐标为________.
4、如图,等边三角形ABC,BC的高AD=4cm,点P为AD上一动点,E为AB边的中点,则BP+EP的最小值_________.
5、如图,平面直角坐标系中,是边长为2的等边三角形,作与关于点成中心对称,再作与于点成中心对称,如此作下去,则的顶点的坐标是________.
三、解答题(10小题,每小题5分,共计50分)
1、如图,在平面直角坐标系中有一个△ABC,顶点A(-1,3),B(2,0),C(-3,-1).
(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);点A关于x轴对称的点坐标为_______;点B关于y轴对称的点坐标为_______;
(2)若网格上的每个小正方形的边长为1,则△ABC的面积是_______.
2、如图,的顶点坐标分别为画出绕点顺时针旋转,得到并直接写出的面积.
3、在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,的顶点的坐标分别是,,.
(1)求的面积;
(2)在图中作出关于轴的对称图形;
(3)写出点,的坐标.
4、如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).
(1)请画出△ABC关于y轴对称的△A1B1C1,并写出点A1的坐标;
(2)请画出△ABC绕点B顺时针旋转90°后的△A2BC2;
(3)求出(2)中△A2BC2的面积.
5、如图,在所给网格图(每小格边长均为1的正方形)中完成下列各题:
(1)△ABC的面积为 ;
(2)画出格点△ABC(顶点均在格点上)关于x轴对称的△A1B1C1;
(3)在y轴上画出点Q,使QA+QC最小.(保留画的痕迹)
6、如图1,A(﹣2,6),C(6,2),AB⊥y轴于点B,CD⊥x轴于点D.
(1)求证:△AOB≌△COD;
(2)如图2,连接AC,BD交于点P,求证:点P为AC中点;
(3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EF.EF⊥CE且EF=CE,点G为AF中点.连接EG,EO,求证:∠OEG=45°.
7、如图,在平面直角坐标系中,点A的坐标为A(0,6),点B的坐标为B(8, 0),点P从点A出发,沿折线A→O→B以每秒1个单位长度的速度向终点B运动;点Q从B点出发,沿折线B→O→A以每秒3个单位长度的速度向终点A运动.P,Q两点同时出发,当其中一点到达终点时另一点也停止运动.直线l经过原点O,分别过P,Q两点作PE⊥l于E,QF⊥l于点F,设点P的运动时间为t(秒):
(1)当P,Q两点相遇时,求t的值;
(2)在整个运动过程中,用含t的式子表示Q点的坐标;
(3)在整个运动过程中,以O,P,E为顶点的三角形与以O,Q,F为顶点的三角形能否全等?若能全等,请求出Q点的坐标,若不能全等,请说明理由.
8、如图,在平面直角坐标系中,已知的三个顶点都在网格的格点上.
(1)在图中作出关于轴对称的,并写出点的对应点的坐标;
(2)在图中作出关于轴对称的,并写出点的对应点的坐标.
9、如图,在平面直角坐标系中,已知点A(2,﹣2),点P是x轴上的一个动点.
(1)A1,A2分别是点A关于原点的对称点和关于y轴对称的点,直接写出点A1,A2的坐标,并在图中描出点A1,A2.
(2)求使△APO为等腰三角形的点P的坐标.
10、已知点A(a+2b,1),B(﹣2,2a﹣b),若点A,B关于y轴对称,求a+b的值.
-参考答案-
一、单选题
1、D
【分析】
根据垂线段最短可知BC⊥l,即BC⊥x轴,由已知即可求解.
【详解】
解:∵点A(0,3),经过点A的直线l∥x轴,C是直线l上的一个动点,
∴点C的纵坐标是3,
根据垂线段最短可知,当BC⊥l时,线段BC的长度最短,此时, BC⊥x轴,
∵B(2,1),
∴点C的横坐标是2,
∴点C坐标为(2,3),
故选:D.
【点睛】
本题考查坐标与图形、垂线段最短,熟知图形与坐标的关系,掌握垂线段最短是解答的关键.
2、B
【分析】
利用y轴对称的点的坐标特征:横坐标互为相反数,纵坐标相等,即可求出点B的坐标.
【详解】
解:∵ A(-4,3) ,
∴关于y轴对称点B的坐标为(4,3).
故答案为:B.
【点睛】
本题主要是考查了y轴对称的点的坐标特征,熟练掌握关于不同坐标轴对称的点的坐标特征,是解决此类问题的关键.
3、C
【分析】
根据第三象限内点的特点可知横纵坐标都为负,据此判断即可.
【详解】
解:∵点在第三象限内,
∴
m的值可以是
故选C
【点睛】
本题考查了第三象限内点的坐标特征,掌握各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.
4、C
【分析】
根据关于轴对称的点坐标的特征:纵坐标不变,横坐标互为相反数,即可求解.
【详解】
解:点的坐标是,点与点关于轴对称,
的坐标为,
故选:C.
【点睛】
本题主要是考查了关于轴对称的点坐标的特征,熟练掌握关于坐标轴对称的点的特征,是解决该类问题的关键.
5、D
【分析】
若将地球看作一个大的坐标系,每个位置同样有对应的横纵坐标,即为经纬度.
【详解】
离北京市100千米、在河北省、在怀来县北方均表示的是位置的大概范围,
东经114.8°,北纬40.8°为准确的位置信息.
故选:D.
【点睛】
本题考查了实际问题中的坐标表示,理解经纬度和横纵坐标的本质是一样的是解题的关键.
6、C
【分析】
首先确定角码的变化规律,利用规律确定答案即可.
【详解】
解:∵各三角形都是等腰直角三角形,
∴直角顶点的纵坐标的长度为斜边的一半,
A3(0,0),A7(2,0),A11(4,0)…,
∵2021÷4=505余1,
∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,
∴A2021的坐标为(1012,0).
故选:C
【点睛】
本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.
7、A
【分析】
关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数,据此直接作答即可.
【详解】
解:点(2,3)关于x轴对称的是
故选A
【点睛】
本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数”是解本题的关键.
8、C
【分析】
根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可.
【详解】
解:由题意,得
点P(-2,3)关于原点对称的点的坐标是(2,-3),
故选:C.
【点睛】
本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
9、A
【分析】
根据y轴上点的横坐标为0列方程求解即可.
【详解】
解:∵点A(x+2,x﹣3)在y轴上,
∴x+2=0,
解得x=-2.
故选:A.
【点睛】
本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.
10、A
【分析】
直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案.
【详解】
∵点P(m,1)在第二象限内,
∴m<0,
∴1﹣m>0,
则点Q(1﹣m,﹣1)在第四象限.
故选:A.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
二、填空题
1、
【分析】
直接利用关于原点对称点的性质得出x,y的值进而得出答案.
【详解】
解:∵点与关于原点对称,
∴
解得:,
则xy的值是:-3.
故答案为:-3.
【点睛】
此题主要考查了关于原点对称点的性质,正确得出的值是解题关键.
2、3
【分析】
根据点的纵坐标的绝对值是点到轴的距离,可得答案.
【详解】
在平面直角坐标系中,点P(2,﹣3)到轴的距离为3.
故答案为:3.
【点睛】
本题考查了点的坐标,点的纵坐标的绝对值是点到轴的距离,横坐标的绝对值是点到轴的距离.
3、
【分析】
根据轴上的点,纵坐标为0,求出m值即可.
【详解】
解:∵点在轴上,
∴,
解得,,
则;
点的坐标为(-2,0);
故答案为:-3,(-2,0).
【点睛】
本题考查了坐标轴上点的坐标特征,解题关键是明确轴上的点,纵坐标为0.
4、4cm
【分析】
先连接,再根据,将转化为,最后根据两点之间线段最短,求得的长,即为的最小值.
【详解】
解:连接,
等边中,是边上的高,
是边上的中线,即垂直平分
,
当、、三点共线时,,
等边中,是边的中点,
,
的最小值为4,
故答案为:4cm.
【点睛】
本题主要考查了等边三角形的轴对称性质和勾股定理的应用等知识,解题的关键是熟练掌握和运用等边三角形的性质以及轴对称的性质,解题时注意,最小值问题一般需要考虑两点之间线段最短或垂线段最短等结论.
5、
【分析】
首先根据△是边长为2的等边三角形,可得的坐标为,的坐标为;然后根据中心对称的性质,分别求出点、、的坐标各是多少;最后总结出的坐标的规律,求出的坐标是多少即可.
【详解】
解:△是边长为2的等边三角形,
的坐标为:,的坐标为:,
△与△关于点成中心对称,
点与点关于点成中心对称,
,,
点的坐标是:,
△与△关于点成中心对称,
点与点关于点成中心对称,
,,
点的坐标是:,
△与△关于点成中心对称,
点与点关于点成中心对称,
,,
点的坐标是:,
,
,,,,,
的横坐标是:,的横坐标是:,
当为奇数时,的纵坐标是:,当为偶数时,的纵坐标是:,
顶点的纵坐标是:,
△是正整数)的顶点的坐标是:,
△的顶点的横坐标是:,纵坐标是:,
故答案为:.
【点睛】
此题主要考查了中心对称的性质、坐标与图形性质、等边三角形的性质等知识;熟练掌握等边三角形的性质和中心对称的性质,分别判断出的横坐标和纵坐标是解题的关键.
三、解答题
1、(1)图见解析,(-1,-3),(-2,0);(2)9
【分析】
(1)根据题意直接利用关于坐标轴对称点的性质得出各对应点位置即可;
(2)由题意利用△ABC所在矩形面积减去周围三角形面积进行计算进而得出答案.
【详解】
解:(1)如图,△A1B1C1即为所作,
点A关于x轴对称的点坐标为 (-1,-3);
点B关于y轴对称的点坐标为:(-2,0);
故答案为:(-1,-3),(-2,0);
(2)△ABC的面积是:4×5-×2×4-×3×3-×1×5=9.
故答案为:9.
【点睛】
本题主要考查轴对称变换以及求三角形面积-补全法,根据题意得出对应点位置是解题的关键.
2、图见解析,面积为2
【分析】
先求出旋转后A1(5,2),B1(2,3),C1(4,1),然后描点,连线,利用矩形面积减三个三角形面积即可.
【详解】
解:∵的顶点坐标分别为,绕点顺时针旋转,得到,
∴点A1横坐标-1+[5-(-1)]=5,纵坐标-1+[-1-(-4)]=2,A1(5,2),
∴点B1横坐标-1+[2-(-1)]=2,纵坐标-1+[-1-(-5)]=3,B1(2,3),
∴点C1横坐标-1+[4-(-1)]=4,纵坐标-1+[-1-(-3)]=1,C1(4,1),
在平面直角坐标系中描点A1(5,2),B1(2,3),C1(4,1),
顺次连结A1B1, B1C1,C1A1,
则△A1B1C1为所求;
,
=,
=,
=2.
【点睛】
本题考查三角形旋转画图,割补法求三角形面积,掌握求旋转坐标的方法,描点法画图,割补法求面积是解题关键.
3、(1);(2)见解析;(3)A1(1,5),C1(4,3)
【分析】
(1)根据三角形面积公式进行计算即可得;
(2)可以由三个顶点的位置确定,只要能分别画出这三个顶点关于y轴的对称点,连接这些对称点即可得;
(3)根据(2)即可写出.
【详解】
解:(1)
(2)如下图所示:
(3)A1(1,5);C1(4,3)
【点睛】
本题考查了画轴对称图形,解题的关键是掌握画轴对称图形的方法.
4、(1)见解析,(﹣2,4);(2)见解析;(3)3.5
【分析】
(1)利用关于y轴对称的点的坐标特征写出A、B、C的对应点A1、B1、C1的坐标,然后描点即可;
(2)利用网格特点和旋转的性质画出A、C的对应点A2和C2即可;
(3)用一个矩形的面积分别减去三个直角三角形的面积去计算△A2BC2的面积.
【详解】
解:(1)如图,△A1B1C1为所作,点A1的坐标为(﹣2,4);
(2)如图,△A2BC2为所作;
(3)△A2BC2的面积=3×3﹣×3×1﹣×2×1﹣×3×2=3.5.
【点睛】
本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.
5、(1)5;(2)见解析;(3)见解析
【分析】
(1)利用“补全矩形法”求解△ABC的面积;
(2)找到A、B、C三点关于x轴的对称点,顺次连接可得△A1B1C1;
(3)作点A关于y轴的对称点A',连接A'C,则A'C与y轴的交点即是点Q的位置.
【详解】
解:(1)如图所示:
S△ABC=3×4-×2×2-×2×3-×4×1=5.
(2)如图所示:
(3)如图所示:
【点睛】
本题考查了轴对称作图及最短路径的知识,难度一般,解答本题注意“补全矩形法”求解格点三角形面积的应用.
6、(1)见解析;(2)见解析;(3)见解析
【分析】
(1)根据即可证明;
(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;
(3)延长到,使,连接,,延长交于点,根据证明,得出,,故,由平行线的性质得出,进而推出,根据证明,故,,即可证明.
【详解】
(1)轴于点,轴于点,
,
,,
,,
;
(2)
如图2,过点作轴,交于点,
,
,
轴,
,
,
,
,,,
,
在与中,
,
,
,即点为中点;
(3)
如图3,延长到,使,连接,,延长交于点,
,,,
,
,,
,
,
,
,
,
,,
,
,
,
,
,,
,
,即.
【点睛】
本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键.
7、(1)秒;(2)Q(,0)或 Q(0,);(3)能全等,(5,0)或(0,)
【分析】
(1)由P,Q两点相遇即P,Q两点运动的路程和为OB+OA=8+6,据此列方程求解即可;
(2)分点Q在线段OB上和在线段OA上两种情况讨论,即可求解;
(2)分三种情况讨论,根据全等三角形的性质即可求解.
【详解】
解:(1)∵点A的坐标为A(0,6),点B的坐标为B(8, 0),
∴OA=6,OB=8,
根据题意得:,
∴,
解得:
∴当P,Q两点相遇时,的值为秒;
(2)∵点Q可能在线段OB上,也可能在线段OA上.
∴①当点Q在线段OB上时:Q(8-3t,0);
②当点Q在线段OA上时:Q(0,3t-8);
综上,Q点的坐标为(8-3t,0)或(0,3t-8);
(3)答:在整个运动过程中,以O,P,E为顶点的三角形与以O,Q,F为顶点的三角形能全等.
理由:①当时,点Q在OB上,点P在OA上,
∵∠PEO=∠QFO=90°,
∴∠POE+∠QOF=90°,∠OQF+∠QOF=90°,
∴∠POE=∠OQF,
∴△POE≌△OQF,
∴PO=QO,即:,
解得:t=1;
②当时,点Q在OA上,点P也在OA上,
∵∠PEO=∠QFO=90°,
∠POE=∠QOF(公共角),即P,Q重合时,△POE≌△QOF,
∴PO=QO,即:,
解得:;
当点Q运动到A点时,P点还未到达O点,所以不存在这种种情况
∵当t=1时,点Q在x轴上,(5,0);
当t=时,点Q在y轴上,(0,)
∴当Q点坐标为(5,0)或(0,)时,以O,P,E为顶点的三角形与以O,Q,F为顶点的三角形全等.
【点睛】
本题考查了坐标与图形,全等三角形的性质,一元一次方程的应用,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.
8、(1)为所求,图形见详解,点B1(-5,-1);(2)为所求,图形见详解,点B2(5,1).
【分析】
(1)根据关于轴对称的,求出A1(-6,-6),B1(-5,-1),C1(-1,-6),然后在平面直角坐标系中描点,顺次连接A1B1, B1C1,C1A1即可;
(2)根据关于轴对称的,求出A2(6,6),点B2(5,1),点C2(1,6),
然后在平面直角坐标系中描点,顺次连接A2B2, B2C2,C2A2即可.
【详解】
解:(1)根据点在平面直角坐标系中的位置,△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),
关于轴对称的,
关于x轴对称点的特征是横坐标不变,纵坐标互为相反数,
∴中点A1(-6,-6),点B1(-5,-1),点C1(-1,-6),
在平面直角坐标系中描点A1(-6,-6),B1(-5,-1),C1(-1,-6),
顺次连接A1B1, B1C1,C1A1,
则为所求,点B1(-5,-1);
(2)∵关于轴对称的,
∴点的坐标特征是横坐标互为相反数,纵坐标不变,
∵△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),
∴中点A2(6,6),点B2(5,1),点C2(1,6),
在平面直角坐标系中描点A2(6,6),B2(5,1),C2(1,6),
顺次连接A2B2, B2C2,C2A2,
则为所求,点B2(5,1).
【点睛】
本题考查在平面直角坐标系中画称轴对称的图形,掌握画图方法,先求坐标,描点,顺次连接是解题关键.
9、(1)A1(﹣2,2),A1(﹣2,﹣2),见解析;(2)P点坐标为(﹣2,0)或(2,0)或(4,0)或(2,0)
【分析】
(1)利用关于原点对称和y轴对称的点的坐标特征写出点A1,A2的坐标,然后描点;
(2)先计算出OA的长,再分类讨论:当OP=OA或AP=AO或PO=PA时,利用直角坐标系分别写出对应的P点坐标.
【详解】
解:(1)A1(﹣2,2),A1(﹣2,﹣2),如图,
(2)如图,设P点坐标为(t,0),
,
当OP=OA时,P点坐标为或;
当AP=AO时,P点坐标为(4,0),
当PO=PA时,P点坐标为(2,0),
综上所述,P点坐标为或或(4,0)或(2,0).
【点睛】
本题考查的是轴对称的性质,中心对称的性质,坐标与图形,等腰三角形的定义,清晰的分类讨论是解本题的关键.
10、
【分析】
根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”列方程组求出a、b的值,然后相加计算即可得解.
【详解】
解:∵点A(a+2b,1),B(﹣2,2a﹣b)关于y轴对称,
∴,
解得,
∴a+b=.
【点睛】
本题考查了关于y轴对称的点的坐标特征,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
数学七年级下册第十五章 平面直角坐标系综合与测试当堂达标检测题: 这是一份数学七年级下册第十五章 平面直角坐标系综合与测试当堂达标检测题,共31页。试卷主要包含了平面直角坐标系中,点P,点A的坐标为,则点A在,在平面直角坐标系中,点P,在平面直角坐标系中,点A等内容,欢迎下载使用。
2021学年第十五章 平面直角坐标系综合与测试同步训练题: 这是一份2021学年第十五章 平面直角坐标系综合与测试同步训练题,共27页。试卷主要包含了已知点P,平面直角坐标系中,点P,如果点P,在平面直角坐标系中,点A,在平面直角坐标系中,点P等内容,欢迎下载使用。
数学七年级下册第十五章 平面直角坐标系综合与测试随堂练习题: 这是一份数学七年级下册第十五章 平面直角坐标系综合与测试随堂练习题,共28页。试卷主要包含了平面直角坐标系内一点P,如图,A,若点在第三象限,则点在.,在平面直角坐标系中,点等内容,欢迎下载使用。