![2022年强化训练沪教版七年级数学第二学期第十五章平面直角坐标系综合练习试题(含解析)第1页](http://img-preview.51jiaoxi.com/2/3/12712467/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练沪教版七年级数学第二学期第十五章平面直角坐标系综合练习试题(含解析)第2页](http://img-preview.51jiaoxi.com/2/3/12712467/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练沪教版七年级数学第二学期第十五章平面直角坐标系综合练习试题(含解析)第3页](http://img-preview.51jiaoxi.com/2/3/12712467/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学七年级下册第十五章 平面直角坐标系综合与测试测试题
展开
这是一份数学七年级下册第十五章 平面直角坐标系综合与测试测试题,共24页。试卷主要包含了在平面直角坐标系中,点在,点P关于原点对称的点的坐标是等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,已知点P(5,−5),则点P在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2、点向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为( )A. B. C. D.3、若点在第三象限内,则m的值可以是( )A.2 B.0 C. D.4、如图在平面直角坐标系中,点N与点F关于原点O对称,点F的坐标是(3,2),则点N的坐标是( )A.(﹣3,﹣2) B.(﹣3,2) C.(﹣2,3) D.(2,3)5、平面直角坐标系中,下列在第二象限的点是( )A. B. C. D.6、在平面直角坐标系中,点A的坐标为(﹣4,3),若AB∥x轴,且AB=5,当点B在第二象限时,点B的坐标是( )A.(﹣9,3) B.(﹣1,3) C.(1,﹣3) D.(1,3)7、在平面直角坐标系中,点在( )A.轴正半轴上 B.轴负半轴上C.轴正半轴上 D.轴负半轴上8、点P(-3,1)关于原点对称的点的坐标是( )A.(-3,1) B.(3,1) C.(3,-1) D.(-3,-1)9、如图,直角坐标平面xOy内,动点P按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…按这样的运动规律,动点P第2021次运动到点( )A.(2020,﹣2) B.(2020,1) C.(2021,1) D.(2021,﹣2)10、点P(﹣2,b)与点Q(a,3)关于x轴对称,则a+b的值为( )A.5 B.﹣5 C.1 D.﹣1第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、平面直角坐标系中,已知点,,且ABx轴,若点到轴的距离是到轴距离的2倍,则点的坐标为________.2、线段CD是由线段AB平移得到的,点的对应点为,则点的对应点D的坐标是______.3、在平面直角坐标系内,点A(a,﹣3)与点B(1,b)关于原点对称,则a+b的值_________.4、已知点M(x,3)与点N(﹣2,y)关于x轴对称,则x+y=_____.5、若点P(-5,a)与Q(b,)关于x轴对称,则代数式的值为___.三、解答题(10小题,每小题5分,共计50分)1、如图,在平面直角坐标系中,已知A(1,4)、B(3,1)、C(3,5),△ABC关于y轴的对称图形为△A1B1C1 (1)请画出△ABC关于y轴对称图形△A1B1C1,并写出三个顶点的坐标A1( ), B1( ),C1( )(2)在y轴上取点D,使得△ABD为等腰三角形,这样的点D共有 个2、如图,在平面直角坐标系中,直角的三个顶点分别是,,.(1)将以点为旋转中心顺时针旋转,画出旋转后对应的并写出各个顶点坐标;(2)分别连结,后,求四边形的面积.3、如图,在平面直角坐标系中,△ABC的两个顶点A,B在x轴上,顶点C在y轴上,且∠ACB=90°.(1)图中与∠ABC相等的角是 ;(2)若AC=3,BC=4,AB=5,求点C的坐标.4、已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向下平移5个单位长度得到的△A2B2C2;(3)若点B的坐标为(4,2),请写出点B经过两次图形变换的对应点B2的坐标.5、如图,平面直角坐标系中,的顶点都在格点上,已知点的坐标是.(1)点的坐标是______;(2)画出关于轴对称的,其中点、、的对应点分别为点、、;(3)直接写出的面积为______.6、如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2,并写出点A2的坐标.7、如图,ABCDx轴,且AB=CD=3,A点坐标为(-1,1),C点坐标为(1,-1),请写出点B,点D的坐标.8、在如图所示的平面直角坐标系中,A点坐标为.(1)画出关于y轴对称的;(2)求的面积.9、已知点A(a+2b,1),B(﹣2,2a﹣b),若点A,B关于y轴对称,求a+b的值.10、如图所示的方格纸中,每个小方格的边长都是,点,,.(1)作关于轴对称的;(2)通过作图在轴上找出点,使最小,并直接写出点的坐标. -参考答案-一、单选题1、D【分析】根据各象限内点的坐标特征解答即可.【详解】解:点P(5,-5)的横坐标大于0,纵坐标小于0,所以点P所在的象限是第四象限.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、C【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:点A的坐标为(3,5),将点A向上平移4个单位,再向左平移3个单位到点B,点B的横坐标是:33=6,纵坐标为:5+4=1,即(6,1).故选:C.【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.3、C【分析】根据第三象限内点的特点可知横纵坐标都为负,据此判断即可.【详解】解:∵点在第三象限内,∴m的值可以是故选C【点睛】本题考查了第三象限内点的坐标特征,掌握各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.4、A【分析】根据点F点N关于原点对称,即可求解.【详解】解:∵F点与N点关于原点对称,点F的坐标是(3,2),∴N点坐标为(﹣3,﹣2).故选:A【点睛】本题主要考查了关于原点对称的点的坐标特征,熟练掌握若两点关于原点对称,横纵坐标均互为相反数是解题的关键.5、C【分析】由题意直接根据第二象限点的坐标特点,横坐标为负,纵坐标为正,进行分析即可得出答案.【详解】解:A、点(1,0)在x轴,故本选项不合题意;B、点(3,-5)在第四象限,故本选项不合题意;C、点(-1,8)在第二象限,故本选项符合题意;D、点(-2,-1)在第三象限,故本选项不合题意;故选:C.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6、A【分析】根据平行及线段长度、点B在第二象限,可判断点B一定在点A的左侧,且两个点纵坐标相同,再由线段长即可确定点B的坐标.【详解】解:∵轴,且,点B在第二象限,∴点B一定在点A的左侧,且两个点纵坐标相同,∴,即,故选:A.【点睛】题目主要考查坐标系中点的坐标,理解题意,掌握坐标系中点的特征是解题关键.7、B【分析】依据坐标轴上的点的坐标特征即可求解.【详解】解:∵点(,),纵坐标为∴点(,)在x轴负半轴上故选:B【点睛】本题考查了点的坐标:坐标平面内的点与有序实数对是一一对应的关系;解题时注意:x轴上点的纵坐标为,y轴上点的横坐标为.8、C【分析】据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),然后直接作答即可.【详解】解:根据中心对称的性质,可知:点P(3,1)关于原点O中心对称的点的坐标为(3,1).故选:C.【点睛】本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.9、B【分析】观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,然后根据商和余数的情况确定运动后点的坐标即可.【详解】解:点的运动规律是每运动四次向右平移四个单位,,动点第2021次运动时向右个单位,点此时坐标为,故选:B.【点睛】本题主要考查平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号.10、B【分析】根据关于x轴对称的两点的坐标特征:横坐标相同,纵坐标互为相反数,即可求得a与b的值,从而求得a+b的值.【详解】∵点P(﹣2,b)与点Q(a,3)关于x轴对称∴a=−2,b=−3∴a+b=−2+(−3)=−5故选:B【点睛】本题考查了关于x轴对称的两点的坐标特征,掌握这个特征是关键.二、填空题1、或【分析】根据AB平行x轴,两点的纵坐标相同,得出y=2,再根据点到轴的距离是到轴距离的2倍,得出即可.【详解】解:∵点,,且ABx轴,∴y=2,∵点到轴的距离是到轴距离的2倍,∴,∴,∴B(-4,2)或(4,2).故答案为(-4,2)或(4,2).【点睛】本题考查两点组成线段与坐标轴的位置关系,点到两轴的距离,掌握两点组成线段与坐标轴的位置关系,与x轴平行,两点纵坐标相同,与y轴平行,两点的横坐标相同,点到两轴的距离,到x轴的距离为|y|,到y轴的距离是|x|是解题关键.2、【分析】点的对应点为,确定平移方式,先向右平移5个单位长度,再向上平移3个单位长度,从而结合可得其对应点的坐标.【详解】解: 线段CD是由线段AB平移得到的,点的对应点为,而 , 故答案为:【点睛】本题考查的是坐标系内点的平移,掌握由坐标的变化确定平移方式,再由平移方式得到对应点的坐标是解本题的关键.3、2【分析】根据点关于原点对称的坐标特点即可完成.【详解】∵点A(a,﹣3)与点B(1,b)关于原点对称∴ ∴ 故答案为:2【点睛】本题考查了平面直角坐标系中关于原点对称的点的坐标特征,即横、纵坐标均互为相反数,求代数式的值;掌握这个特征是关键.4、﹣5【分析】利用关于x轴对称的点的坐标特点可得x、y的值,进而可得答案.【详解】解:∵点M(x,3)与点N(﹣2,y)关于x轴对称,∴x=﹣2,y=﹣3,∴x+y=﹣5,故答案为:﹣5.【点睛】本题考查了坐标与图象变化的轴对称问题,如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数.相反的,如果有两点关于直线Y对称,那么点A的横坐标为相反数,纵坐标不变.5、##【分析】先利用横坐标互为相反数,纵坐标不变求解 再逆用积的乘方公式即可得到答案.【详解】解: 点P(-5,a)与Q(b,)关于x轴对称, 故答案为:【点睛】本题考查的是关于轴对称的点的坐标特点,积的乘方的逆运算,掌握“公式 与关于轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数”是解本题的关键.三、解答题1、(1)见解析;-1,4 ;-3,1;-3,5;(2)5【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(2)分AB为腰和AB为底分别求解可得.【详解】解:(1)如图所示,△A1B1C1即为所求.A1(-1,4) ;B1(-3,1);C1(-3,5);故答案为:-1,4 ;-3,1;-3,5;(2)以点A为顶点、AB为腰的等腰三角形ABD,且点D在y轴上的有2个;以点B为顶点,BA为腰的等腰△ABD,且点D在y轴上的有2个;以AB为底边的等腰三角形,且点D在y轴上的点只有1个;所以这样的点D共有5个,故答案为:5.【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质,并据此得出变换后的对应点.2、(1)图见解析,,,;(2)9【分析】利用网格特点和旋转的性质画出、、的对应点、、,从而得到;利用两个梯形的面积和减去一个三角形的面积计算四边形的面积.【详解】解:如图,为所作,各个顶点坐标为,,;如图,四边形的面积.【点睛】本题考查了作图旋转变换,根据旋转的性质画出转后对应的是解决问题的关键.3、(1)∠ACO;(2)点C的坐标为(0,).【分析】(1)由同角的余角相等,可得到∠ABC=∠ACO;(2)利用面积法可求得CO的长,进而得到点C的坐标.【详解】解:(1)∵OC⊥AB,∠ACB=90°.∴∠ABC+∠BCO=∠ACO+∠BCO=90°,∴∠ABC=∠ACO;故答案为:∠ACO;(2)∵AC=3,BC=4,AB=5,∴三角形ABC是直角三角形,∠ACB=90°ABCO=ACBC,即CO==,∴点C的坐标为(0,).【点睛】本题考查了同角的余角相等,面积法求线段的长,坐标与图形,解题的关键是灵活运用所学知识解决问题.4、(1)见解析;(2)见解析;(3)(﹣4,﹣3)【分析】(1)分别作出A,B,C 的对应点A1,B1,C1即可.(2)分别作出点A1,B1,C1的对应点A2,B2,C2即可.(3)根据所画图形,直接写出坐标即可.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)点B2的坐标为(﹣4,﹣3).【点睛】本题考查作图——轴对称变换,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.5、(1);(2)见解析;(3)12【分析】(1)根据平面直角坐标系写出点的坐标即可;(2)找到点关于轴对称的对应点,顺次连接,则即为所求;(3)根据正方形的面积减去三个三角形的面积即可求得的面积【详解】(1)根据平面直角坐标系可得的坐标为,故答案为:(2)如图所示,找到点关于轴对称的对应点,顺次连接,则即为所求;(3)的面积为故答案为:【点睛】本题考查了坐标与图形,轴对称的性质与作图,掌握轴对称的性质是解题的关键.6、(1)画图见解析,;(2)画图见解析,(-2,2)【分析】(1)根据关于y轴的点的坐标特征分别作出△ABC的各个顶点关于x轴的对称点,然后连线作图即可;(2)利用网格特点和旋转的性质画出点A2、B、C2的坐标,然后描点即可得到△A2BC2,然后写出点A2的坐标.【详解】解:(1)如图,即为所求;∵是A(2,4)关于x轴对称的点,∴根据关于x轴对称的点的坐标特征可知:;(2)如图,即为所求,∴的坐标为(-2,2).【点睛】本题考查轴对称及旋转作图,掌握点的坐标变化规律找准图形对应点正确作图是解题关键.7、B(2,1),D(﹣2,﹣1).【分析】根据平行于x轴的直线上点的坐标的特点求出纵坐标,再根据AB=CD=3得出横坐标.【详解】解:∵AB∥CD∥x轴,A点坐标为(﹣1,1),点C(1,﹣1),∴点B、D的纵坐标分别是1,﹣1,∵AB=CD=3,∴点B、D的横坐标分别是-1+3=2,1-3=-2,∴B(2,1),D(﹣2,﹣1).【点睛】本题主要是考查平行于x轴的直线的特点,解题关键是明确平行于x轴的直线上点的纵坐标相同.8、(1)见解析;(2).【分析】(1)分别作A、B、C三点关于y轴的对称点A1、B1、C1,顺次连接A1、B1、C1即可得答案;(2)用△ABC所在矩形面积减去三个小三角形面积即可得答案.【详解】(1)分别作A、B、C三点关于y轴的对称点A1、B1、C1,△A1B1C1即为所求;(2)S△ABC=3×3=.【点睛】本题考查了作轴对称图形和运用拼凑法求不规则三角形的面积,其中掌握拼凑法求不规则图形的面积是解答本题的关键.9、【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”列方程组求出a、b的值,然后相加计算即可得解.【详解】解:∵点A(a+2b,1),B(﹣2,2a﹣b)关于y轴对称,∴,解得,∴a+b=.【点睛】本题考查了关于y轴对称的点的坐标特征,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.10、(1)见解析;(2)见解析,点P的坐标为(−3,0) 【分析】(1)先分别作出点A、B、C关于y轴的对称点,然后再顺次连接可得;(2)作点A关于x轴的对称点A″,再连接A″C交x轴于点P,再确定点P的坐标即可.【详解】解:(1)如图所示:即为所求. (2)作点A关于x轴的对称点A′′,连结A′′C,交x轴于点P,点P即为所求,点P的坐标为(−3,0) 【点睛】本题主要考查作图﹣轴对称变换,熟练掌握轴对称变换的定义和性质及最短路径问题是解答本题的关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练,共26页。试卷主要包含了若点P,点P关于y轴对称点的坐标是.,已知点在一等内容,欢迎下载使用。
这是一份数学七年级下册第十五章 平面直角坐标系综合与测试课后作业题,共32页。试卷主要包含了在平面直角坐标系中,点A,在平面直角坐标系中,点P,已知点在一等内容,欢迎下载使用。
这是一份数学七年级下册第十五章 平面直角坐标系综合与测试课后作业题,共28页。试卷主要包含了平面直角坐标系中,将点A,在下列说法中,能确定位置的是等内容,欢迎下载使用。