![2022年强化训练沪教版七年级数学第二学期第十五章平面直角坐标系章节训练试题(含解析)第1页](http://img-preview.51jiaoxi.com/2/3/12712447/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练沪教版七年级数学第二学期第十五章平面直角坐标系章节训练试题(含解析)第2页](http://img-preview.51jiaoxi.com/2/3/12712447/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练沪教版七年级数学第二学期第十五章平面直角坐标系章节训练试题(含解析)第3页](http://img-preview.51jiaoxi.com/2/3/12712447/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后作业题
展开
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后作业题,共29页。试卷主要包含了在平面直角坐标系中,点P,点P关于原点对称的点的坐标是,下列各点,在第一象限的是,点在等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是( )A.(-2,3)或(-2,-3) B.(-2,3)C.(-3,2)或(-3,-2) D.(-3,2)2、已知点在一、三象限的角平分线上,则的值为( )A. B. C. D.3、根据下列表述,能够确定具体位置的是( )A.北偏东25°方向 B.距学校800米处C.温州大剧院音乐厅8排 D.东经20°北纬30°4、在平面直角坐标系中,点P(﹣2,﹣3)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限5、点P(-3,1)关于原点对称的点的坐标是( )A.(-3,1) B.(3,1) C.(3,-1) D.(-3,-1)6、平面直角坐标系中,下列在第二象限的点是( )A. B. C. D.7、在平面直角坐标系中,点A的坐标为(﹣4,3),若AB∥x轴,且AB=5,当点B在第二象限时,点B的坐标是( )A.(﹣9,3) B.(﹣1,3) C.(1,﹣3) D.(1,3)8、下列各点,在第一象限的是( )A. B. C.(2,1) D.9、点在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限10、点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( )A.(-4,3) B.(4,-3) C.(-3,4) D.(3,-4)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知点与点关于轴对称,则________.2、已知点与关于原点对称,则xy的值是______.3、如图,在平面直角坐标系中,四边形ABOC是正方形,点A的坐标为(1,1),是以点B为圆心,BA为半径的圆弧;是以点O为圆心,OA1为半径的圆弧,是以点C为圆心,CA2为半径的圆弧,是以点A为圆心,AA3为半径的圆弧,继续以点B、O、C、A为圆心按上述作法得到的曲线AA1A2A3A4A5…称为正方形的“渐开线”,那么点A2021的坐标是______.4、已知在平面直角坐标系中,点在第一象限,且点到轴的距离为2,到轴的距离为5,则的值为______.5、已知点P(3,1)关于y轴的对称点Q的坐标为 _____.三、解答题(10小题,每小题5分,共计50分)1、在平面直角坐标系xOy中,点M(2,t-2)与点N关于过点(0,t)且垂直于y轴的直线对称.(1)当t =-3时,点N的坐标为 ;(2)以MN为底边作等腰三角形MNP.①当t =1且直线MP经过原点O时,点P坐标为 ;②若MNP上所有点到x轴的距离都不小于a(a是正实数),则t的取值范围是 (用含a的代数式表示)2、如图,在平面直角坐标系中,已知的三个顶点的坐标分别为、、.(1)画出将关于点对称的图形;(2)写出点、、的坐标.3、如图,在平面直角坐标系中,点为坐标原点,点,点在轴的负半轴上,点,连接、,且,(1)求的度数;(2)点从点出发沿射线以每秒2个单位长度的速度运动,同时,点从点出发沿射线以每秒1个单位长度的速度运动,连接、,设的面积为,点运动的时间为,求用表示的代数式(直接写出的取值范围);(3)在(2)的条件下,当点在轴的正半轴上,点在轴的负半轴上时,连接、、,,且四边形的面积为25,求的长.4、如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,3),B(﹣3,5),C(﹣4,1).(1)把△ABC向右平移3个单位得△A1B1C1,请画出△A1B1C1并写出点A1的坐标;(2)把△ABC绕原点O旋转180°得到△A2B2C2,请画出△A2B2C2.5、如图,在平面直角坐标系中,已知点A(2,﹣2),点P是x轴上的一个动点.(1)A1,A2分别是点A关于原点的对称点和关于y轴对称的点,直接写出点A1,A2的坐标,并在图中描出点A1,A2.(2)求使△APO为等腰三角形的点P的坐标.6、在如图所示的正方形网格中建立平面直角坐标系,的顶点坐标分别为,,,请按要求解答下列问题:(1)画出关于x轴对称的,并写出点A的对应点的坐标为( , );(2)平行于y轴的直线l经过,画出关于直线l对称的图形,并直接写出( , ),( , ),( , );(3)仅用无刻度直尺作出的角平分线BD,保留画图痕迹(不写画法).7、如图,在平面直角坐标系xOy中,A(1,﹣2).(1)作△ABC关于y轴的对称图形△A′B′C′;(2)写出B′和C′的坐标;(3)求△ABC的面积.8、如图,在平面直角坐标中,、、.(1)在图中作出关于轴的对称图形;(2)直接写出点、、的坐标:________,________,________.(3)求的面积.9、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点A的坐标为(1,-4).(1)△A1B1C1是△ABC关于y轴的对称图形,则点A的对称点A1的坐标是_______,并在图中画出△A1B1C1.(2)将△ABC绕原点逆时针旋转90°得到△A2B2C2,则A点的对应点A2的坐标是______,并在图中画出△A2B2C2 .10、已知:如图,在平面直角坐标系中.(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标:A1( ),B1( ),C1( );(2)直接写出△ABC的面积为 ;(3)在x轴上画点P,使PA+PC最小. -参考答案-一、单选题1、A【分析】根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.【详解】解:∵点P在y轴左侧,∴点P在第二象限或第三象限,∵点P到x轴的距离是3,到y轴距离是2,∴点P的坐标是(-2,3)或(-2,-3),故选:A.【点睛】此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.2、A【分析】根据平面直角坐标系一三象限角平分线上点的特征是横纵坐标相等列式计算即可;【详解】∵点在一、三象限的角平分线上,∴,∴;故选A.【点睛】本题主要考查了一三象限角平分线上点的特征,准确分析计算是解题的关键.3、D【分析】根据确定位置的方法即可判断答案.【详解】A. 北偏东25°方向不能确定具体位置,缺少距离,故此选项错误;B. 距学校800米处不能确定具体位置,缺少方向,故此选项错误;C. 温州大剧院音乐厅8排不能确定具体位置,应具体到8排几号,故此选项错误;D. 东经20°北纬30°可以确定一点的位置,故此选项正确.故选:D.【点睛】本题考查确定位置的方法,掌握确定位置要具体到一点是解题的关键.4、C【分析】根据第三象限内点的坐标横纵坐标都为负的直接可以判断【详解】解:在平面直角坐标系中,点P(﹣2,﹣3)在第三象限故选C【点睛】本题考查了平面直角坐标系中各象限内的点的坐标特征,理解各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.5、C【分析】据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),然后直接作答即可.【详解】解:根据中心对称的性质,可知:点P(3,1)关于原点O中心对称的点的坐标为(3,1).故选:C.【点睛】本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.6、C【分析】由题意直接根据第二象限点的坐标特点,横坐标为负,纵坐标为正,进行分析即可得出答案.【详解】解:A、点(1,0)在x轴,故本选项不合题意;B、点(3,-5)在第四象限,故本选项不合题意;C、点(-1,8)在第二象限,故本选项符合题意;D、点(-2,-1)在第三象限,故本选项不合题意;故选:C.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7、A【分析】根据平行及线段长度、点B在第二象限,可判断点B一定在点A的左侧,且两个点纵坐标相同,再由线段长即可确定点B的坐标.【详解】解:∵轴,且,点B在第二象限,∴点B一定在点A的左侧,且两个点纵坐标相同,∴,即,故选:A.【点睛】题目主要考查坐标系中点的坐标,理解题意,掌握坐标系中点的特征是解题关键.8、C【分析】由题意根据各象限内点的坐标特征逐项进行分析判断即可.【详解】解:、在第四象限,故本选项不合题意;、在第二象限,故本选项不合题意;、在第一象限,故本选项符合题意;、在第三象限,故本选项不合题意;故选:C.【点睛】本题考查各象限内点的坐标的符号特征,熟练掌握各象限内点的坐标的符号是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9、C【分析】根据各象限内点的坐标特征解答.【详解】解:点的横坐标小于0,纵坐标小于0,点所在的象限是第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).10、C【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【详解】解:∵点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,∴点P的横坐标是-3,纵坐标是4,∴点P的坐标为(-3,4).故选C.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.二、填空题1、12【分析】根据关于轴对称的点,纵坐标相同,横坐标互为相反数分别求出、的值,然后代入代数式进行计算即可求解.【详解】解:点与点关于轴对称,,,.故答案为:.【点睛】本题考查了关于轴对称的点的坐标,解题的关键是掌握好对称点的坐标规律:关于轴对称的点,纵坐标相同,横坐标互为相反数.2、【分析】直接利用关于原点对称点的性质得出x,y的值进而得出答案.【详解】解:∵点与关于原点对称,∴ 解得:,则xy的值是:-3.故答案为:-3.【点睛】此题主要考查了关于原点对称点的性质,正确得出的值是解题关键.3、(2021,0)【分析】将四分之一圆弧对应的A点坐标看作顺时针旋转90°,再根据A、A1、A2、A3、A4的坐标找到规律即可.【详解】∵A点坐标为(1,1),且A1为A点绕B点顺时针旋转90°所得∴A1点坐标为(2,0)又∵A2为A1点绕O点顺时针旋转90°所得∴A2点坐标为(0,-2)又∵A3为A2点绕C点顺时针旋转90°所得∴A3点坐标为(-3,1)又∵A4为A3点绕A点顺时针旋转90°所得∴A4点坐标为(1,5)由此可得出规律:An为绕B、O、C、A四点作为圆心依次循环顺时针旋转90°,且半径为1、2、3、、、n,每次增加1.∵2021÷4=505…1故A2021为以点B为圆心,半径为2021的A2020点顺时针旋转90°所得故A2021点坐标为(2021,0).故答案为:(2021,0).【点睛】本题考查了点坐标规律探索,通过点的变化探索出旋转的规律是解题的关键.4、7【分析】由题意得,,,即可得.【详解】解:由题意得,,,则,故答案为:7.【点睛】本题考查了点的坐标特征,解题的关键是理解题意.5、(﹣3,1)【分析】点关于y轴的对称点坐标,横坐标为相反数,纵坐标不变;可以得到对称点Q的坐标.【详解】解:点P(3,1)关于y轴的对称点Q的坐标为(﹣3,1).故答案为:(﹣3,1).【点睛】本题考察坐标系中点的对称.解题的关键在于明确点在对称时坐标的变化形式.三、解答题1、(1)(2,-1);(2)①(-2,1);②t≥a+2或t≤-a-2【分析】(1)先求出对称轴,再表示N点坐标即可;(2)①以MN为底边作等腰三角形MNP,则点P在直线y=t=1上,直线OM与y=1的交点即为所求;②表示出M、N、P的坐标,比较纵坐标的绝对值即可.【详解】(1)过点(0,t)且垂直于y轴的直线解析式为y=t∵点M(2,t-2)与点N关于过点(0,t)且垂直于y轴的直线对称∴可以设N点坐标为(2,n),且MN中点在y=t上∴,记得∴点N坐标为∴当t =-3时,点N的坐标为(2)①∵以MN为底边作等腰三角形MNP,且点M(2,t-2)与点N直线y=t对称.∴点P在直线y=t上,且P是直线OM与y=1的交点当t =1时M(2,-1),N(2,3)∴OM直线解析式为∴当y=1时,∴P点坐标为(-2,1)②由题意得,点M坐标为(2,t-2),点N坐标为,点P坐标为∵,MNP上所有点到x轴的距离都不小于a∴只需要或者当M、N、P都在x轴上方时,,此时,解得t≥a+2当MNP上与x轴有交点时,此时MNP上所有点到x轴的距离可以为0,不符合要求;当M、N、P都在x轴下方时,,此时,解得t≤-a-2综上t≥a+2或t≤-a-2【点睛】本题考查坐标与轴对称、等腰三角形的性质等知识,解题的关键是利用轴对称表示坐标,属于中考常考题型.2、(1)见解析;(2),,.【分析】(1)直接利用关于点O对称的性质得出对应点位置,顺次连接各个对应点,即可;(2)根据对应点位置直接写出坐标,即可.【详解】解:(1)如图所示,(2),,.【点睛】本题考查了利用中心对称变换在坐标系中作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.3、(1);(2);(3)5【分析】(1)根据非负数的性质求得的值,进而求得,即可证明是等腰直角三角形,即可求得的度数;(2)分点在轴正半轴,原点,轴负半轴三种情况,根据点的运动表示出线段长度,进而根据三角形的面积公式即可列出代数式;(3)过点作,连接,根据四边形的面积求得,进而求得,由,设,,则,证明,进而可得,,进一步导角可得,根据等角对等边即可求得【详解】(1)是等腰直角三角形,(2)①当点在轴正半轴时,如图,,, ,②当点在原点时,都在轴上,不能构成三角形,则时,不存在③当点在轴负半轴时,如图, ,, ,综上所述:(3)如图,过点作,连接,设,,则, 是等腰直角三角形在和中,是等腰直角三角形中,,又【点睛】本题考查了非负数的性质,等腰三角形的性质与判定,全等三角形的性质与判定,正确的添加辅助线是解题的关键.4、(1)图见解析;A1(3,3);(2)见解析【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案.【详解】解:(1)如图所示:△A1B1C1,即为所求,点A1的坐标为:(3,3);(2)如图所示:△A2B2C2,即为所求.【点睛】此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键.5、(1)A1(﹣2,2),A1(﹣2,﹣2),见解析;(2)P点坐标为(﹣2,0)或(2,0)或(4,0)或(2,0)【分析】(1)利用关于原点对称和y轴对称的点的坐标特征写出点A1,A2的坐标,然后描点;(2)先计算出OA的长,再分类讨论:当OP=OA或AP=AO或PO=PA时,利用直角坐标系分别写出对应的P点坐标.【详解】解:(1)A1(﹣2,2),A1(﹣2,﹣2),如图,(2)如图,设P点坐标为(t,0),,当OP=OA时,P点坐标为或;当AP=AO时,P点坐标为(4,0),当PO=PA时,P点坐标为(2,0),综上所述,P点坐标为或或(4,0)或(2,0).【点睛】本题考查的是轴对称的性质,中心对称的性质,坐标与图形,等腰三角形的定义,清晰的分类讨论是解本题的关键.6、(1)图见解析,;(2)图见解析,,,;(3)见解析【分析】(1)利用关于x轴对称的点的坐标特征得到、、的坐标,然后描点即可;(2)根据网格特点和对称的性质,分别作出A、B、C关于直线l的对称点、、,然后写出它们的坐标;(3)把AB绕A点逆时针旋转90°得到AE,连接BE交AC于D.【详解】解:(1)如图,为所作,;(2)如图,为所作,,,;(3)如图,BD为所作. 【点睛】本题考查了平面直角坐标系中点的坐标,画轴对称图形,解题的关键是正确写出点的坐标.7、(1)见解析;(2)B′(﹣5,6),C′(-7,2);(3)16【分析】(1)利用轴对称的性质分别作出A,B,C的对应点A′,B′,C′即可;(2)根据点的位置写出坐标即可;(3)把三角形面积看成长方形面积减去周围三个三角形面积即可.【详解】解:(1)如图,△A′B′C′即为所求;(2)B′(﹣5,6),C′(-7,2);(3)S△ABC=8×6﹣×8×4﹣×2×4﹣×6×4=16.【点睛】本题考查作图﹣轴对称变换,三角形的面积等知识,解题的关键是掌握轴对称变换的性质,学会用分割法求三角形面积.8、(1)见解析;(2),,;(3)【分析】(1)根据轴对称图形的特点画出图形即可;(2)根据所画出的图形写出点的坐标;(3)首先把三角形放在一个大正方形内,再用大正方形的面积减去四周三角形的面积即可.【详解】解:(1)如图所示:(2)根据平面直角坐标系可得:,,;故答案为:,,(3)△ABC的面积=3×5-×3×3-×2×1-×5×2=.【点睛】本题主要考查了轴对称图形,以及点的坐标,三角形的面积,关键是掌握在计算不规则图形的面积时,可以利用可以用补图的方法.9、(1)图见解析,A1(-1,-4);(2)图见解析,A2(4,1).【分析】(1)根据网格结构,找出点A、B、C关于y轴对称的点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标即可;(2)根据网格结构,找出点A、B、C绕点逆时针旋转90°的对应点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点A2的坐标即可.【详解】解:(1)如图所示,△A1B1C1即为所求作的三角形,点A1(-1,-4);(2)如图所示,△A2B2C2即为所求作的三角形,点A2(4,1).故答案为:(4,1).【点睛】本题考查了旋转和轴对称作图,掌握画图的方法和图形的特点是关键;注意根据对应点得到对称轴.10、(1)作图见解析,(0,﹣2),(﹣2,﹣4),(﹣4,﹣1);(2)5;(3)见解析【分析】(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用△ABC所在长方形面积减去周围三角形面积进而得出答案;(3)先确定A关于轴的对称点,再连接交轴于则此时满足要求.【详解】解:(1)如图所示:△A1B1C1即为所求,A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);故答案为:(0,﹣2),(﹣2,﹣4),(﹣4,﹣1);(2)△ABC的面积为:12﹣×1×4﹣×2×2﹣×2×3=5;故答案为:5;(3)如图所示:点P即为所求.【点睛】本题考查的是轴对称的作图,坐标与图形,掌握“利用轴对称确定线段和取最小值时点的位置”是解本题的关键.
相关试卷
这是一份初中沪教版 (五四制)第十五章 平面直角坐标系综合与测试课时训练,共28页。试卷主要包含了点在第四象限,则点在第几象限,已知点A等内容,欢迎下载使用。
这是一份2021学年第十五章 平面直角坐标系综合与测试练习,共35页。试卷主要包含了点关于轴对称的点的坐标是,下列各点,在第一象限的是等内容,欢迎下载使用。
这是一份初中第十五章 平面直角坐标系综合与测试课后练习题,共29页。试卷主要包含了在下列说法中,能确定位置的是,如果点P,平面直角坐标系中,将点A等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)