终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新沪教版七年级数学第二学期第十五章平面直角坐标系达标测试试题(无超纲)

    立即下载
    加入资料篮
    2022年最新沪教版七年级数学第二学期第十五章平面直角坐标系达标测试试题(无超纲)第1页
    2022年最新沪教版七年级数学第二学期第十五章平面直角坐标系达标测试试题(无超纲)第2页
    2022年最新沪教版七年级数学第二学期第十五章平面直角坐标系达标测试试题(无超纲)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)第十五章 平面直角坐标系综合与测试测试题

    展开

    这是一份沪教版 (五四制)第十五章 平面直角坐标系综合与测试测试题,共30页。试卷主要包含了已知点P,已知点M,若平面直角坐标系中的两点A,在平面直角坐标系中,点P,若点在第三象限,则点在.等内容,欢迎下载使用。
    七年级数学第二学期第十五章平面直角坐标系达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,每个小正方形的边长为1,在阴影区域的点是(   A.(1,2)  B.(﹣1,﹣2) C.(﹣1,2) D.(1,﹣2)2、平面直角坐标系内与点P关于原点对称的点的坐标是(     A. B. C. D.3、在平面直角坐标系中,点A的坐标为(﹣4,3),若ABx轴,且AB=5,当点B在第二象限时,点B的坐标是(  )A.(﹣9,3) B.(﹣1,3) C.(1,﹣3) D.(1,3)4、已知点Pm+3,2m+4)在x轴上,那么点P的坐标为(  )A.(-1,0) B.(1,0) C.(-2,0) D.(2,0)5、已知点Mm,﹣1)与点N(3,n)关于原点对称,则m+n的值为(  )A.3 B.2 C.﹣2 D.﹣36、若平面直角坐标系中的两点Aa,3),B(1,b)关于y轴对称,则ab的值是(  A.2 B.-2 C.4 D.-47、在平面直角坐标系中,点P(﹣2,﹣3)在(   )A.第一象限 B.第二象限 C.第三象限 D.第四象限8、在平面直角坐标系中,点P的位置如图所示,则点P的坐标可能是(    A.(4,2) B.(﹣4,2) C.(﹣4,﹣2) D.(2,4)9、若点在第三象限,则点在(    ).A.第一象限 B.第二象限 C.第三象限 D.第四象限10、如图,在平面直角坐标系中,已知“蝴蝶”上有两点,将该“蝴蝶”经过平移后点的对应点为,则点的对应点的坐标为(    A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、若点Am,5)与点B(-4,n)关于原点成中心对称,则mn=________.2、将自然数按图规律排列:如果一个数在第m行第n列,那么记它的位置为有序数对,例如:数2在第2行第1列,记它的位置为有序数对.按照这种方式,(1)位置为有序数对的数是______;(2)数位置为有序数对______.3、点P(1,-2)关于轴的对称点的坐标是_________.4、若点(-1,m)与点(n,2)关于y轴对称,则的值为__________.5、在平面直角坐标系中,若点P关于x轴的对称点Q的坐标是(﹣3,2),则点P关于y轴的对称点R的坐标是_____.三、解答题(10小题,每小题5分,共计50分)1、(探索发现)等腰RtABC中,∠BAC=90°,ABAC,点AB分别是y轴、x轴上两个动点, 直角边 ACx轴于点D,斜边BCy轴于点E(1)如图1,已知C点的横坐标为﹣1,请直接写出点A的坐标              (2)如图2,当等腰RtABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE(拓展应用)(3)如图3,若点Ax轴上,且A(﹣4,0),点By轴的正半轴上运动时,分别以OBAB为直角边在第一、二象限作等腰直角△BOD和等腰直角△ABC,连接CDy轴于点P,当点By轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请直接写出BP的长度为            2、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点A的坐标为(1,-4).(1)△A1B1C1是△ABC关于y轴的对称图形,则点A的对称点A1的坐标是_______,并在图中画出△A1B1C1(2)将△ABC绕原点逆时针旋转90°得到△A2B2C2,则A点的对应点A2的坐标是______,并在图中画出△A2B2C2 3、如图,在直角坐标系中,点A(3,3),B(4,0),C(0,2).(1)画出△ABC关于原点O对称的△A1B1C1(2)求△A1B1C1的面积.4、如图在平面直角坐标系中,△ABC各顶点的坐标分别为: A(4,0),B(﹣1,4),C(﹣3,1)(1)在图中作△ABC′使△ABC′和△ABC关于x轴对称;(2)求△ABC的面积5、如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(3,2).(1)将△ABC向下平移四个单位长度,画出平移后的△A1B1C1;(点ABC的对应点分别是点A1B1C1);(2)画出△A1B1C1关于y轴对称的△A2B2C2(点A1B1C1的对称点分别是点A2B2C2).6、如图,在平面直角坐标系中,的三个顶点都在格点上,点的坐标为,请回答下列问题.(1)画出关于x轴对称的,并写出点的坐标(___,___)(2)点Px轴上一点,当的长最小时,点P坐标为______;(3)点M是直线BC上一点,则AM的最小值为______.7、如图,的顶点坐标分别为画出绕点顺时针旋转,得到并直接写出的面积.8、如图,平面直角坐标系中,的顶点都在格点上,已知点的坐标是(1)点的坐标是______;(2)画出关于轴对称的,其中点的对应点分别为点(3)直接写出的面积为______.9、如图,已知的三个顶点分别为(1)请在坐标系中画出关于轴对称的图形的对应点分别是),并直接写出点的坐标;(2)求四边形的面积.10、如图,ABCDx轴,且ABCD=3,A点坐标为(-1,1),C点坐标为(1,-1),请写出点B,点D的坐标. -参考答案-一、单选题1、C【分析】根据平面直角坐标系中点的坐标的表示方法求解即可.【详解】解:图中阴影区域是在第二象限,A.(1,2)位于第一象限,故不在阴影区域内,不符合题意;B.(-1,-2)位于第三象限,故不在阴影区域内,不符合题意;C.(﹣1,2)位于第二象限,其横纵坐标的绝对值不超过3,故在阴影区域内,符合题意;D. (1,-2)位于第四象限,故不在阴影区域内,不符合题意.故选:C.【点睛】此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.2、C【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可.【详解】解:由题意,得P(-2,3)关于原点对称的点的坐标是(2,-3),故选:C.【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.3、A【分析】根据平行及线段长度、点B在第二象限,可判断点B一定在点A的左侧,且两个点纵坐标相同,再由线段长即可确定点B的坐标.【详解】解:∵轴,,点B在第二象限,∴点B一定在点A的左侧,且两个点纵坐标相同,,即故选:A.【点睛】题目主要考查坐标系中点的坐标,理解题意,掌握坐标系中点的特征是解题关键.4、B【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.【详解】解:∵点Pm+3,2m+4)在x轴上,∴2m+4=0,解得:m=-2,m+3=-2+3=1,∴点P的坐标为(1,0).故选:B【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.5、C【分析】利用两个点关于原点对称时,它们的坐标符号相反,即点关于原点的对称点是,进而求出即可.【详解】解:与点关于原点对称,故选:C.【点睛】本题主要考查了关于原点对称点的坐标,解题的关键是正确掌握关于原点对称点的性质.6、A【分析】直接利用关于y轴对称点的性质,横坐标互为相反数,纵坐标相同,进而得出答案.【详解】解:依题意可得a=-1,b=3ab=2故选A【点睛】此题主要考查了关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题关键.7、C【分析】根据第三象限内点的坐标横纵坐标都为负的直接可以判断【详解】解:在平面直角坐标系中,点P(﹣2,﹣3)在第三象限故选C【点睛】本题考查了平面直角坐标系中各象限内的点的坐标特征,理解各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.8、A【分析】根据点在第一象限,结合第一象限点的横纵坐标都为正的进而即可判断【详解】解:由题意可知,点P在第一象限,且横坐标大于纵坐标,A.(4,2)在第一象限,且横坐标大于纵坐标,故本选项符合题意;B.(﹣4,2)在第二象限,故本选项符合题意;C.(﹣4,﹣2)在第三象限,故本选项符合题意;D.(2,4)在第一象限,但横坐标小于纵坐标,故本选项符合题意;故选:A.【点睛】本题考查了各象限点的坐标特征,掌握各象限点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.9、A【分析】根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.【详解】∵点Pmn)在第三象限,m<0,n<0,∴-m>0,-n>0,∴点在第一象限.故选:A【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10、D【分析】先根据与点对应,求出平移规律,再利用平移特征求出点B′坐标即可【详解】解:∵与点对应,∴平移1-3=-2,3-7=-4,先向下平移4个单位,再向左平移2个单位,∵点B(7,7),∴点B′(7-2,7-4)即如图所示 故选:D.【点睛】本题考查图形与坐标,点的平移特征,掌握点的平移特征是解题关键.二、填空题1、【分析】根据关于原点对称的点的坐标特征:关于原点对称的点,横纵坐标都互为相反数,进行求解即可.【详解】解:∵点Am,5)与点B(-4,n)关于原点成中心对称,m=4,n=-5,m+n=-5+4=-1,故答案为:-1.【点睛】本题主要考查了关于原点对称点的坐标特征,代数式求值,熟知关于原点对称的点的坐标特征是解题的关键.2、    (9,6)    【分析】根据题意,找出题目的规律,中含有4个数,中含有9个数,中含有16个数,……,中含有64个数,且奇数行都是从左边第一个数开始,然后根据这个规律即可得出答案.【详解】解:根据题意,如图:∴有序数对的数是由图可知,中含有4个数,中含有9个数,中含有16个数;……中含有64个数,且奇数行都是从左边第一个数开始,是第九行的第6个数;∴数位置为有序数对是(9,6).故答案为:;(9,6).【点睛】此题考查数字的变化规律,找出数字之间的联系,得出运算规律,解决问题.3、【分析】根据若点关于y轴对称的点的坐标为,据此可求解.【详解】解:点P(1,-2)关于轴的对称点的坐标是故答案为【点睛】本题主要考查点的坐标关于坐标轴对称问题,熟练掌握点的坐标关于坐标轴对称的特征是解题的关键.4、3【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出mn的值,然后相加计算即可得解.【详解】解:∵点(-1,m)与点(n,2)关于y轴对称,故答案为:3.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.5、【分析】根据题意直接利用关于x轴、y轴对称点的性质进行分析即可得出答案.【详解】解:∵点P关于x轴的对称点Q的坐标是(﹣3,2),∴点P的坐标为(﹣3,﹣2),∴点P关于y轴的对称点R的坐标是(3,﹣2),故答案为:(3,﹣2).【点睛】本题主要考查关于x轴、y轴对称点的性质,正确掌握横、纵坐标的关系是解题的关键.三、解答题1、(1)A(0,1);(2)见解析;(3)不变,2【分析】(1)如图(1),过点CCFy轴于点F,构建全等三角形:△ACF≌△BAOAAS),结合该全等三角形的对应边相等易得OA的长度,由点Ay轴上一点可以推知点A的坐标;(2)过点CCGACy轴于点G,则△ACG≌△BADASA),即得CG=AD=CD,∠ADB=∠G,由∠DCE=∠GCE=45°,可证△DCE≌△GCESAS)得∠CDE=∠G,从而得到结论;(3)BP的长度不变,理由如下:如图(3),过点CCHy轴于点H,构建全等三角形:△CBH≌△BAOAAS),结合全等三角形的对应边相等推知:CH=BOBH=AO=4.再结合已知条件和全等三角形的判定定理AAS得到:△CPH≌△DPB,故BP=HP=2.【详解】解:(1)如图(1),过点CCFy轴于点FCFy轴于点F∴∠CFA=90°,∠ACF+∠CAF=90°,∵∠CAB=90°,∴∠CAF+∠BAO=90°,∴∠ACF=∠BAO在△ACF和△ABO中,∴△ACF≌△BAOAAS),CF=OA=1,A(0,1);(2)如图2,过点CCGACy轴于点GCGAC∴∠ACG=90°,∠CAG+∠AGC=90°,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∴∠AGC=∠ADO在△ACG和△ABD中,∴△ACG≌△BADAAS),CG=AD=CD,∠ADB=∠AGC∵∠ACB=45°,∠ACG=90°,∴∠DCE=∠GCE=45°,在△DCE和△GCE中,∴△DCE≌△GCESAS),∴∠CDE=∠AGC∴∠ADB=∠CDE(3)BP的长度不变,理由如下:如图,过点CCHy轴于点H ∵∠ABC=90°,∴∠CBH+∠ABO=90°.∵∠BAO+∠ABO=90°,∴∠CBH=∠BAO∵∠CHB=∠AOB=90°,AB=AC∴△CBH≌△BAOAAS),CH=BOBH=AO=4.BD=BOCH=BD∵∠CHP=∠DBP=90°,∠CPE=∠DPB∴△CPH≌△DPBAAS),BP=HP=2.故答案为:2.【点睛】本题考查了三角形综合题.主要利用了全等三角形的性质定理与判定定理,解决本题的关键是作出辅助线,构建全等三角形.2、(1)图见解析,A1(-1,-4);(2)图见解析,A2(4,1).【分析】(1)根据网格结构,找出点ABC关于y轴对称的点A1B1C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标即可;(2)根据网格结构,找出点ABC绕点逆时针旋转90°的对应点A2B2C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点A2的坐标即可.【详解】解:(1)如图所示,△A1B1C1即为所求作的三角形,点A1(-1,-4);(2)如图所示,△A2B2C2即为所求作的三角形,点A2(4,1).故答案为:(4,1).【点睛】本题考查了旋转和轴对称作图,掌握画图的方法和图形的特点是关键;注意根据对应点得到对称轴.3、(1)图形见解析;(2)5【分析】(1)根据关于原点对称的点的坐标特征,依次求出的坐标即可;(2)利用割补法求△A1B1C1面积.【详解】(1)∵∴△ABC关于原点O对称的△A1B1C1位置如图:(2)【点睛】此题考查了中心对称的知识,解答本题的关键是根据关于原点对称的点的坐标特征得到各点的对应点.4、(1)见解析;(2)11.5【分析】(1)直接利用关于x轴对称点的性质,进而得出答案;(2)利用△ABC所在矩形面积减去周围三角形面积进而得出答案.【详解】解:(1)如图所示(2)【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.5、(1)图见解析;(2)图见解析.【分析】(1)先根据平移分别画出点,再顺次连接即可得;(2)先根据轴对称的性质画出点,再顺次连接即可得.【详解】解:(1)如图,即为所求;(2)如图,即为所求.【点睛】本题考查了平移作图、画轴对称图形,熟练掌握平移和轴对称的作图方法是解题关键.6、(1)5,-3;(2)(,0);(3)【分析】(1)利用关于x轴对称的点的坐标特征写出A1B1C1的坐标,然后描点即可;(2)连接BC1x轴于点P,利用两点之间线段最短可判断P点满足条件,利用待定系数法求得直线BC1的解析式,即可求解;(3)利用割补法求得△ABC的面积,利用两点之间的距离公式求得BC的长,再利用面积法即可求解.【详解】解:(1)如图,△A1B1C1为所作,点C1的坐标为(5,-3);故答案为:5,-3;(2)如图,点P为所作.设直线BC1的解析式为y=kx+b∵点C1的坐标为(5,-3),点B的坐标为(1,2),,解得:∴直线BC1的解析式为y=x+y=0时,x=∴点P的坐标为(,0);故答案为:(,0);(3)根据垂线段最短,当AM垂直BC时,垂线段AM取得最小值,ABC的面积为2×4-×2×1-×4×1-×3×1=BC=××AM=AM=故答案为:【点睛】本题考查了作图-轴对称变换:几何图形都可看作是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.注意:关于x轴对称的点,横坐标相同,纵坐标互为相反数.7、图见解析,面积为2【分析】先求出旋转后A1(5,2),B1(2,3),C1(4,1),然后描点,连线,利用矩形面积减三个三角形面积即可.【详解】解:∵的顶点坐标分别为绕点顺时针旋转,得到∴点A1横坐标-1+[5-(-1)]=5,纵坐标-1+[-1-(-4)]=2,A1(5,2),∴点B1横坐标-1+[2-(-1)]=2,纵坐标-1+[-1-(-5)]=3,B1(2,3),∴点C1横坐标-1+[4-(-1)]=4,纵坐标-1+[-1-(-3)]=1,C1(4,1),在平面直角坐标系中描点A1(5,2),B1(2,3),C1(4,1),顺次连结A1B1 B1C1C1A1则△A1B1C1为所求;===2.【点睛】本题考查三角形旋转画图,割补法求三角形面积,掌握求旋转坐标的方法,描点法画图,割补法求面积是解题关键.8、(1);(2)见解析;(3)12【分析】(1)根据平面直角坐标系写出点的坐标即可;(2)找到点关于轴对称的对应点,顺次连接,则即为所求;(3)根据正方形的面积减去三个三角形的面积即可求得的面积【详解】(1)根据平面直角坐标系可得的坐标为故答案为:(2)如图所示,找到点关于轴对称的对应点,顺次连接,则即为所求;(3)的面积为故答案为:【点睛】本题考查了坐标与图形,轴对称的性质与作图,掌握轴对称的性质是解题的关键.9、(1)画图见解析,;(2)【分析】(1)根据关于轴对称的点的坐标特征写出点的坐标,然后描点即可;(2)根据三角形面积公式,利用四边形的面积进行计算.【详解】解:(1)根据题意得:点关于轴的对称点分别为如图,为所作;(2)四边形的面积【点睛】本题主要考查了图形的变换——轴对称,坐标与图形,熟练掌握轴对称图形的关键是找到对称轴,图形关于对称轴折叠前后对应线段,对应角相等是解题的关键.10、B(2,1),D(﹣2,﹣1).【分析】根据平行于x轴的直线上点的坐标的特点求出纵坐标,再根据ABCD=3得出横坐标.【详解】解:∵ABCDx轴,A点坐标为(﹣1,1),点C(1,﹣1),∴点BD的纵坐标分别是1,﹣1,ABCD=3,∴点BD的横坐标分别是-1+3=2,1-3=-2,B(2,1),D(﹣2,﹣1).【点睛】本题主要是考查平行于x轴的直线的特点,解题关键是明确平行于x轴的直线上点的纵坐标相同. 

    相关试卷

    2020-2021学年第十五章 平面直角坐标系综合与测试课时作业:

    这是一份2020-2021学年第十五章 平面直角坐标系综合与测试课时作业,共28页。试卷主要包含了如果点P,一只跳蚤在第一象限及x轴,已知点A,下列各点,在第一象限的是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步训练题:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步训练题,共25页。试卷主要包含了直角坐标系中,点A与点B关于,已知点A,点在第四象限,则点在第几象限,已知A等内容,欢迎下载使用。

    初中沪教版 (五四制)第十五章 平面直角坐标系综合与测试随堂练习题:

    这是一份初中沪教版 (五四制)第十五章 平面直角坐标系综合与测试随堂练习题,共26页。试卷主要包含了平面直角坐标系内一点P,点A个单位长度.等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map