![精品试题沪教版七年级数学第二学期第十五章平面直角坐标系定向训练试题(含答案及详细解析)第1页](http://img-preview.51jiaoxi.com/2/3/12712408/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题沪教版七年级数学第二学期第十五章平面直角坐标系定向训练试题(含答案及详细解析)第2页](http://img-preview.51jiaoxi.com/2/3/12712408/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题沪教版七年级数学第二学期第十五章平面直角坐标系定向训练试题(含答案及详细解析)第3页](http://img-preview.51jiaoxi.com/2/3/12712408/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题
展开
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题,共28页。试卷主要包含了若点在第三象限,则点在.,在平面直角坐标系中,点A等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图为某停车场的平面示意图,若“奥迪”的坐标是(-2,-1),“奔驰”的坐标是(1,-1),则“东风标致”的坐标是( )A.(-3,2) B.(3,2) C.(-3,-2) D.(3,-2)2、在平面直角坐标系中,点的坐标为,将点向左平移个单位长度,再向上平移个单位长度得到点,则点的坐标为( )A. B. C. D.3、点P在第二象限内,P点到x、y轴的距离分别是4、3,则点P的坐标为( )A.(-4,3) B.(-3,-4) C.(-3,4) D.(3,-4)4、在平面直角坐标系中,点关于轴的对称点的坐标是( )A. B. C. D.5、上海是世界知名金融中心,以下能准确表示上海市地理位置的是( )A.在中国的东南方 B.东经,北纬 C.在中国的长江出海口 D.东经.6、若点在第三象限,则点在( ).A.第一象限 B.第二象限 C.第三象限 D.第四象限7、在平面直角坐标系中,点A(0,3),B(2,1),经过点A的直线l∥x轴,C是直线l上的一个动点,当线段BC的长度最短时,点C的坐标为( )A.(0,1) B.(2,0) C.(2,﹣1) D.(2,3)8、点向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为( )A. B. C. D.9、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为( )A.-1008 B.-1010 C.1012 D.-101210、在平面直角坐标系中,点P的位置如图所示,则点P的坐标可能是( )A.(4,2) B.(﹣4,2) C.(﹣4,﹣2) D.(2,4)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知点A(a,﹣3)是点B(﹣2,b)关于原点O的对称点,则a+b=_____.2、平面直角坐标系中,点P(-2,-5)到x轴距离是____.3、如图,在平面直角坐标系中,四边形ABOC是正方形,点A的坐标为(1,1),是以点B为圆心,BA为半径的圆弧;是以点O为圆心,OA1为半径的圆弧,是以点C为圆心,CA2为半径的圆弧,是以点A为圆心,AA3为半径的圆弧,继续以点B、O、C、A为圆心按上述作法得到的曲线AA1A2A3A4A5…称为正方形的“渐开线”,那么点A2021的坐标是______.4、已知点与点关于原点对称,则a-b的值为________.5、若,其中b,c为常数,则点P(b,c)关于x轴的对称点的坐标为____.三、解答题(10小题,每小题5分,共计50分)1、如图,在平面直角坐标系中,已知的三个顶点都在网格的格点上.(1)在图中作出关于轴对称的,并写出点的对应点的坐标;(2)在图中作出关于轴对称的,并写出点的对应点的坐标.2、已知点A(1,﹣1),B(﹣1,4),C(﹣3,1).(1)请在如图所示的平面直角坐标系中(每个小正方形的边长都为1)画出△ABC;(2)作△ABC关于x轴对称的△DEF,其中点A,B,C的对应点分别为点D,E,F;(3)连接CE,CF,请直接写出△CEF的面积.3、如图,在直角坐标系中,A(-1,5),B(-3,0),C(-4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)写出点A1 ,B1 ,C1 的坐标.4、如图,已知△ABC各顶点的坐标分别为A(-3,2),B(-4,-3),C(-1,-1). (1)请在图中画出△ABC关于y轴对称的△A1B1C1,(2)并写出△A1B1C1的各点坐标.5、如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.(1)画出△ABC关于直线MN对称的.(2)若B为坐标原点,请写出、、的坐标,并直接写出的长度..(3)如图2,A,C是直线同侧固定的点,D是直线MN上的一个动点,在直线MN上画出点D,使最小.(保留作图痕迹)6、△ABC在平面直角坐标系中的位置如图所示,已知A(﹣2,3),B(﹣3,1),C(﹣1,2).(1)画出△ABC绕点O逆时针旋转90°后得到的△A1B1C1;(2)画出△ABC关于原点O的对称图形△A2B2C2;(3)直接写出下列点的坐标:A1 ,B2 .7、在平面直角坐标系中,的顶点,,的坐标分别为,,.与关于轴对称,点,,的对应点分别为,,.请在图中作出,并写出点,,的坐标.8、如图,已知的三个顶点分别为,,.(1)请在坐标系中画出关于轴对称的图形(,,的对应点分别是,,),并直接写出点,,的坐标;(2)求四边形的面积.9、在如图所示的平面直角坐标系中,A点坐标为.(1)画出关于y轴对称的;(2)求的面积.10、如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于y轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B顺时针旋转90°后的△A2BC2;(3)求出(2)中△A2BC2的面积. -参考答案-一、单选题1、D【分析】由题意,先建立平面直角坐标系,确定原点的位置,即可得到“东风标致”的坐标.【详解】解:∵“奥迪”的坐标是(2,1),“奔驰”的坐标是(1,1),∴建立平面直角坐标系,如图所示:∴“东风标致”的坐标是(3,2);故选:D.【点睛】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.2、A【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:∵点A的坐标为(2,1),将点A向左平移3个单位长度,再向上平移1个单位长度得到点A′,∴点A′的横坐标是2-3=-1,纵坐标为1+1=2,即(-1,2).故选:A.【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.3、C【分析】点P到x、y轴的距离分别是4、3,表明点P的纵坐标、横坐标的绝对值分别为4与3,再由点P在第二象限即可确定点P的坐标.【详解】∵P点到x、y轴的距离分别是4、3,∴点P的纵坐标绝对值为4、横坐标的绝对值为3,∵点P在第二象限内,∴点P的坐标为(-3,4),故选:C.【点睛】本题考查了平面直角坐标系中点所在象限的特点,点到的坐标轴的距离,确定点的坐标,掌握这些知识是关键.要注意:点到x、y轴的距离是此点的纵坐标、横坐标的绝对值,而非横坐标、纵坐标的绝对值.4、B【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点P(2,-1)关于x轴的对称点的坐标为(2,1),故选:B.【点睛】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律.5、B【分析】根据有序数对的性质解答.【详解】解:能准确表示上海市地理位置的是东经,北纬,故选:B.【点睛】此题考查了表示平面上点的位置的方法:有序数对,需用两个有序数量来表示某一位置,掌握有序数对的性质是解题的关键.6、A【分析】根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.【详解】∵点P(m,n)在第三象限,∴m<0,n<0,∴-m>0,-n>0,∴点在第一象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7、D【分析】根据垂线段最短可知BC⊥l,即BC⊥x轴,由已知即可求解.【详解】解:∵点A(0,3),经过点A的直线l∥x轴,C是直线l上的一个动点,∴点C的纵坐标是3,根据垂线段最短可知,当BC⊥l时,线段BC的长度最短,此时, BC⊥x轴,∵B(2,1),∴点C的横坐标是2,∴点C坐标为(2,3),故选:D.【点睛】本题考查坐标与图形、垂线段最短,熟知图形与坐标的关系,掌握垂线段最短是解答的关键.8、C【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:点A的坐标为(3,5),将点A向上平移4个单位,再向左平移3个单位到点B,点B的横坐标是:33=6,纵坐标为:5+4=1,即(6,1).故选:C.【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.9、C【分析】首先确定角码的变化规律,利用规律确定答案即可.【详解】解:∵各三角形都是等腰直角三角形,∴直角顶点的纵坐标的长度为斜边的一半,A3(0,0),A7(2,0),A11(4,0)…,∵2021÷4=505余1,∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,∴A2021的坐标为(1012,0).故选:C【点睛】本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.10、A【分析】根据点在第一象限,结合第一象限点的横纵坐标都为正的进而即可判断【详解】解:由题意可知,点P在第一象限,且横坐标大于纵坐标,A.(4,2)在第一象限,且横坐标大于纵坐标,故本选项符合题意;B.(﹣4,2)在第二象限,故本选项符合题意;C.(﹣4,﹣2)在第三象限,故本选项符合题意;D.(2,4)在第一象限,但横坐标小于纵坐标,故本选项符合题意;故选:A.【点睛】本题考查了各象限点的坐标特征,掌握各象限点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.二、填空题1、5【分析】根据关于原点对称的点的特点可得a,b的值,相加即可.【详解】解:∵点A(a,﹣3)是点B(﹣2,b)关于原点O的对称点,∴a=2,b=3,∴a+b=5.故答案为5.【点睛】本题考查了关于原点对称的点的特点,掌握“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”是解题的关键.2、5【分析】根据点到x轴的距离等于纵坐标的绝对值解答即可.【详解】解:点P(-2,-5)到x轴的距离是5.故答案为:5.【点睛】本题考查了点到坐标轴的距离,熟记点到x轴的距离等于纵坐标的绝对值是解题的关键.3、(2021,0)【分析】将四分之一圆弧对应的A点坐标看作顺时针旋转90°,再根据A、A1、A2、A3、A4的坐标找到规律即可.【详解】∵A点坐标为(1,1),且A1为A点绕B点顺时针旋转90°所得∴A1点坐标为(2,0)又∵A2为A1点绕O点顺时针旋转90°所得∴A2点坐标为(0,-2)又∵A3为A2点绕C点顺时针旋转90°所得∴A3点坐标为(-3,1)又∵A4为A3点绕A点顺时针旋转90°所得∴A4点坐标为(1,5)由此可得出规律:An为绕B、O、C、A四点作为圆心依次循环顺时针旋转90°,且半径为1、2、3、、、n,每次增加1.∵2021÷4=505…1故A2021为以点B为圆心,半径为2021的A2020点顺时针旋转90°所得故A2021点坐标为(2021,0).故答案为:(2021,0).【点睛】本题考查了点坐标规律探索,通过点的变化探索出旋转的规律是解题的关键.4、5【分析】直接利用关于原点对称点的性质得出a,b的值,代入求解即可.【详解】解:∵点A(a,1)与点B(﹣4,b)关于原点对称,∴,,∴,故答案为:5.【点睛】本题考查了关于原点对称点的性质及求代数式的值,正确得出a,b的值是解题的关键.5、(-1,6)【分析】先利用多项式的乘法展开再根据对应项系数相等确定出b、c的值,然后根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:∵(x+2)(x-3)=x2-x-6,∴b=-1,c=-6,∴点P的坐标为(-1,-6),∴点P(-1,-6)关于x轴对称点的坐标是(-1,6).故答案为:(-1,6).【点睛】本题考查了多项式的乘法,关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.三、解答题1、(1)为所求,图形见详解,点B1(-5,-1);(2)为所求,图形见详解,点B2(5,1).【分析】(1)根据关于轴对称的,求出A1(-6,-6),B1(-5,-1),C1(-1,-6),然后在平面直角坐标系中描点,顺次连接A1B1, B1C1,C1A1即可;(2)根据关于轴对称的,求出A2(6,6),点B2(5,1),点C2(1,6),然后在平面直角坐标系中描点,顺次连接A2B2, B2C2,C2A2即可.【详解】解:(1)根据点在平面直角坐标系中的位置,△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),关于轴对称的,关于x轴对称点的特征是横坐标不变,纵坐标互为相反数,∴中点A1(-6,-6),点B1(-5,-1),点C1(-1,-6),在平面直角坐标系中描点A1(-6,-6),B1(-5,-1),C1(-1,-6),顺次连接A1B1, B1C1,C1A1,则为所求,点B1(-5,-1);(2)∵关于轴对称的,∴点的坐标特征是横坐标互为相反数,纵坐标不变,∵△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),∴中点A2(6,6),点B2(5,1),点C2(1,6),在平面直角坐标系中描点A2(6,6),B2(5,1),C2(1,6),顺次连接A2B2, B2C2,C2A2,则为所求,点B2(5,1).【点睛】本题考查在平面直角坐标系中画称轴对称的图形,掌握画图方法,先求坐标,描点,顺次连接是解题关键.2、(1)作图见详解;(2)作图见详解;(3)的面积为2.【分析】(1)直接在坐标系中描点,然后依次连线即可;(2)先确定A、B、C三点关于x轴对称的点的坐标,然后依次连接即可;(3)根据三角形在坐标系中的位置,确定三角形的底和高,直接求面积即可.【详解】解:(1)如图所示,即为所求;(2)A、B、C三点关于x轴对称的点的坐标分别为:,,,然后描点、连线,∴即为所求;(3)由图可得:,∴的面积为2.【点睛】题目主要考查在坐标系中作轴对称图形及点的坐标特点,熟练掌握轴对称图形的性质是解题关键.3、(1)见解析;(2)(1,5),(3,0),(4,3)【分析】(1)根据对称性即可在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)结合(1)即可写出点A1,B1,C1的坐标.【详解】解:(1)如图,△A1B1C1即为所求;(2)A1(1,5),B1(3,0),C1(4,3);故答案为:(1,5),(3,0),(4,3).【点睛】本题考查了作图-轴对称变换,解决本题的关键是掌握轴对称性质.关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标相同.4、(1)见解析;(2)A1(3,2),B1(4,-3),C1(1,-1).【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可;(2)根据所作图形可得答案.【详解】解:(1)如图所示,△A1B1C1即为所求作.(2)由图可知,A1(3,2),B1(4,-3),C1(1,-1).【点睛】本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点.注意:关于x轴对称的点,横坐标相同,纵坐标互为相反数.5、(1)画图见解析;(2),;(3)画图见解析【分析】(1)分别确定关于对称的对称点 再顺次连接从而可得答案;(2)根据在坐标系内的位置直接写其坐标与的长度即可;(3)先确定关于的对称点,再连接 交于 则 从而可得答案.【详解】解:(1)如图1,是所求作的三角形,(2)如图1,为坐标原点,则 (3)如图2,点即为所求作的点.【点睛】本题考查的是画轴对称图形,建立坐标系,用根据点的位置确定点的坐标,轴对称的性质,掌握“利用轴对称的性质得到两条线段和取最小值时点的位置”是解本题的关键.6、(1)见解析;(2)见解析;(3)(-3,-2),(3,-1)【分析】(1)先根据网格找到A、B、C的对应点A1、B1、C1,然后顺次连接A1、B1、C1即可;(2)先根据网格找到A、B、C的对应点A2、B2、C2,然后顺次连接A2、B2、C2即可;(3)根据(1)(2)说画图形求解即可.【详解】解:(1)如图所示,即为所求;(2)如图所示,即为所求;(3)由图可知,的坐标为(-3,-2),的坐标为(3,-1),故答案为:(-3,-2);(3,-1).【点睛】本题主要考查了坐标与图形变化—旋转变化,轴对称变化,画旋转图形和轴对称图形,解题的关键在于能够熟练掌握相关知识进行求解.7、作图见解析,点,点,点【分析】分别作出A,B,C的对应点,,即可.【详解】解: 如图所示.点,点,点.【点睛】本题考查了作图-轴对称变换,直角坐标系中表示点的坐标,熟知关于y轴对称的点的坐标特点是解答此题的关键.8、(1)画图见解析,,,;(2)【分析】(1)根据关于轴对称的点的坐标特征写出点,,的坐标,然后描点即可;(2)根据三角形面积公式,利用四边形的面积进行计算.【详解】解:(1)根据题意得:点,,关于轴的对称点分别为,,,如图,为所作;(2)四边形的面积.【点睛】本题主要考查了图形的变换——轴对称,坐标与图形,熟练掌握轴对称图形的关键是找到对称轴,图形关于对称轴折叠前后对应线段,对应角相等是解题的关键.9、(1)见解析;(2).【分析】(1)分别作A、B、C三点关于y轴的对称点A1、B1、C1,顺次连接A1、B1、C1即可得答案;(2)用△ABC所在矩形面积减去三个小三角形面积即可得答案.【详解】(1)分别作A、B、C三点关于y轴的对称点A1、B1、C1,△A1B1C1即为所求;(2)S△ABC=3×3=.【点睛】本题考查了作轴对称图形和运用拼凑法求不规则三角形的面积,其中掌握拼凑法求不规则图形的面积是解答本题的关键.10、(1)见解析,(﹣2,4);(2)见解析;(3)3.5【分析】(1)利用关于y轴对称的点的坐标特征写出A、B、C的对应点A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出A、C的对应点A2和C2即可;(3)用一个矩形的面积分别减去三个直角三角形的面积去计算△A2BC2的面积.【详解】解:(1)如图,△A1B1C1为所作,点A1的坐标为(﹣2,4);(2)如图,△A2BC2为所作;(3)△A2BC2的面积=3×3﹣×3×1﹣×2×1﹣×3×2=3.5.【点睛】本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试随堂练习题,共26页。试卷主要包含了如图,A,点关于轴对称的点的坐标是,若点P,已知点P,点P等内容,欢迎下载使用。
这是一份2021学年第十五章 平面直角坐标系综合与测试练习题,共27页。试卷主要包含了已知点A,点P关于原点对称的点的坐标是,点A关于y轴的对称点A1坐标是,在平面直角坐标系中,点,如果点P等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习,共30页。试卷主要包含了已知A,已知点A象限,若点在第三象限,则点在.等内容,欢迎下载使用。